Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Anh Dũng An
Xem chi tiết
Trần Thanh Phương
23 tháng 2 2019 lúc 22:08

\(g\left(x\right)=x^2+x-2=x^2-2x+x-2=x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(x+1\right)\)

Để \(f\left(x\right)⋮g\left(x\right)\)thì :

\(f\left(x\right)=g\left(x\right)\cdot Q\left(x\right)\)hay \(ax^3+bx^2+10x-4=\left(x-2\right)\left(x+1\right)\cdot Q\left(x\right)\)

Vì đảng thức đúng với mọi x. Do đó :

+) đặt \(x=2\)ta có :

\(a\cdot2^3+b\cdot2^2+10\cdot2-4=\left(2-2\right)\left(2+1\right)\cdot Q\left(x\right)\)

\(\Leftrightarrow8a+4b+16=0\)

\(\Leftrightarrow4\left(2a+b\right)=-16\)

\(\Leftrightarrow2a+b=-4\)(1)

+) Đặt \(x=-1\)ta có :

\(a\cdot\left(-1\right)^3+b\cdot\left(-1\right)^2+10\cdot\left(-1\right)-4=\left(-1-2\right)\left(-1+1\right)\cdot Q\left(x\right)\)

\(\Leftrightarrow-a+b-14=0\)

\(\Leftrightarrow-a+b=14\)(2)

Lấy (1) trừ (2) ta được :

\(2a+b-\left(-a+b\right)=-4-14\)

\(\Leftrightarrow2a+b+a-b=-18\)

\(\Leftrightarrow3a=-18\)

\(\Leftrightarrow a=-6\)

\(6+b=14\Leftrightarrow b=8\)

Vậy \(a=-6;b=8\)

Trần Thanh Phương
19 tháng 2 2020 lúc 21:26

Vì 2 đường thẳng cắt nhau ở B(x;y) nên ta có:

\(\hept{\begin{cases}y=-2x+2\\x^2+y^2=40\end{cases}}\)

Khách vãng lai đã xóa
Trần Thanh Phương
21 tháng 2 2020 lúc 9:52

Gọi số sp dự định làm trong một ngày là a ( sp ) (a >0)

=> số sp thực tế làm 1 ngày là a + 10 ( sp )

Số ngày dự định làm xong là : \(\frac{240}{a}\) ( ngày )

Số ngày thực tế hoàn thành là : \(\frac{240}{a+10}\) ( ngày )

Ta có pt: \(\frac{240}{a+10}+2=\frac{240}{a}\)

\(\Rightarrow a=30\)( t/m )

Vậy..

Khách vãng lai đã xóa
Vinh Lê Thành
Xem chi tiết
Nguyễn Đức Minh
26 tháng 2 2019 lúc 20:48

who know?

Yến Chử
Xem chi tiết

em chưa cho đa thức f(x) và g(x) nà

Nguyễn Lê Phước Thịnh
29 tháng 3 2023 lúc 22:57

a: \(\dfrac{f\left(x\right)}{g\left(x\right)}\)

\(=\dfrac{x^4-9x^3+21x^2+ax+b}{x^2-x-1}\)

\(=\dfrac{x^4-x^3-x^2-8x^3+8x^2+8x+14x^2-14x-14+\left(a+6\right)x+b+14}{x^2-x-1}\)

\(=x^2-8x+14+\dfrac{\left(a+6\right)x+b+14}{x^2-x-1}\)

Để f(x) chia hết cho g(x) thì a+6=0 và b+14=0

=>a=-6 và b=-14

b: \(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4-x^3+5x^2+x^2-x+5+a-5}{x^2-x+5}\)

\(=x^2+1+\dfrac{a-5}{x^2-x+5}\)

Để f(x) chia hết g(x) thì a-5=0

=>a=5

 

 

Pox Pox
Xem chi tiết
★Čүċℓøρş★
26 tháng 11 2019 lúc 19:07

Bài 1 : 

Gọi f( x )  = 2n2 + n - 7

       g( x ) = n - 2

Cho g( x )  = 0

\(\Leftrightarrow\)n - 2 = 0

\(\Rightarrow\)n      = 2

\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7

\(\Rightarrow\)f( 2 )  = 3

Để f( x ) \(⋮\)g( x )

\(\Rightarrow\)n - 2 \(\in\)Ư( 3 )  = { \(\pm\)1 ; \(\pm\)3 }

Ta lập bảng :

n - 21- 13- 3
n315- 1

Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }

Khách vãng lai đã xóa
o lờ mờ
26 tháng 11 2019 lúc 19:10

2n^2+n-7 n-2 2n+6 2n^2-4n 6n-7 6n-12 5

Để \(2n^2+n-7⋮n-2\) thì \(5⋮n-2\)

Làm nốt

Khách vãng lai đã xóa
o lờ mờ
26 tháng 11 2019 lúc 19:11

sai r.chờ tí,rảnh t làm lại cho,giờ làm câu 2 đã

Khách vãng lai đã xóa
doraemon
Xem chi tiết
doraemon
17 tháng 4 2022 lúc 10:17

Mình có nghĩ ra cách này mọi người xem giúp mình với

f(x) = \(ax^2+bx+c\) 

Ta có f(0) = 2 => c = 2

Ta đặt Q(x) = \(ax^2+bx+c-2020\)

và G(x) = \(ax^2+bx+c+2021\)

f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư

\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)  

Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0

hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)

G(x) chia cho x + 1 số dư 

\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)

Mà G(x) chia hết cho x + 1 nên \(R_2\)=0

hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)

Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)

Đàm Nam Phong
17 tháng 4 2022 lúc 10:32

ko biết !!!

Nguyễn Việt Lâm
17 tháng 4 2022 lúc 16:50

\(f\left(0\right)=2\Rightarrow c=2\)

\(f\left(x\right)-2020\) chia hết \(x-1\Rightarrow f\left(1\right)-2020=0\)

\(\Rightarrow a+b+c-2020=0\Rightarrow a+b-2018=0\)

\(f\left(x\right)+2021\) chia hết \(x+1\Rightarrow f\left(-1\right)+2021=0\)

\(\Rightarrow a-b+c+2021=0\Rightarrow a-b+2023=0\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)

Lê Thu Trang
Xem chi tiết
Trương Đỗ Anh Quân
Xem chi tiết
pham trung thanh
Xem chi tiết
Phúc
18 tháng 11 2017 lúc 10:19

Để f(x) chia het cho g(x) thi

f(x)=g(x).Q(x)

hay ax3 + bx2 + 10x -4 = (x2+2x-x-2).Q(x)

                                      =(x+2)(x-1).Q(x) (1)

Nếu x=1 thi (1) <=>a+b+6=0

                       <=> a+b=-6(2)

Nếu x=-2 thi (1)<=>-8a+4b-20-4=0

                          <=> -8a+4b=24

                         <=> -2a+b=6(3)

Từ (2) va (3) => a=-4,b=-2