cho x và y là 2 số thỏa mãn điều kiện \(\text{x^2+2y^2+2xy+3x+3y-4=0}\)
ae nào bt thì giùm tui vs
tôi cần ae giúp
tks 5000 ae
cho 2 số thực x y thỏa mãn \(x+y=3\) và \(x^2+y^2\ge5\)
Tìm giá trị nhỏ nhất của biểu thức P = \(x^4+y^4+6x^2y^2\)
AE nào bt thì tl giùm tôi nha
tks ae
Ta có x + y= 3 => x= 3 - y
=> (3 - y)^2 + y^2 \(\ge\)5
Giải bất phương trình trên, ta được: y \(\ge\)2
Chỉ biết giải đến đó, min P= 33 thì phải
cảm ơn bn , tôi nghĩ ra rồi
bn ra dc \(y\ge2\)thì thay vào \(x^2+y^2\ge5\) ra dc \(x\ge1\)
khi đó min P = 1+16+6.4.1=41 khi và chỉ khi x=1 và y=2
tks bn
cho x ,y, z là các số nguyên dương thỏa mãn 3x2 _18y2+2z2+3y2z2_18x=27.
GIÚP TUI PHÁT AE Ơ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1) cho a = cănbâc3(căn5+2) -cănbâcba(căn5-2)
tính giá trị biếu thức
a^5 +4a^3 - 4a^2 +3a
2) tìm t =5/x- x/4 biết x thỏa mãn
thỏa mãn pt
x^2 /4 +100/x^2 =35+120/x -6x
3) tìm các số nguyên dương
3x^2 -18y^2 +2z^2 +3y^2z^2 -18x =27
4/ giải phương trình
x^2 =căn (x^3 -x )+ căn(x^2 -x)
5) tìm a hai phưng trình ẩn x thỏa mãn
x^2 +x +a=0 và x^2 +ax +1=0
a)
có nghiệm chung
b) hpt tương đương
6/tim hai số m; n thuộc N sao cho x thuộc N
m^2 +n^2 +mn =3x
cho x,y thỏa mãn đẳng thức 3x^2 +3y^2+4xy+2xy +2x-2y+2=0. Tính giá trị của biểu thức M=(x+y)^2010+(x+2)^2011+(y-1)^2012
CÁC BẠN GIÚP MK VS MK CẦN GẤP
sao giống câu hỏi của mình thế chỉ khác số bạn biết làm ko chỉ mình đi
tìm x,y thỏa mãn các phương trình sau ae help tui vs r tôi tim cho
xy + 2x + y = 11
<=> x(y + 2) + y + 2 = 13
<=> (x + 1)(y + 2) = 13
Lập bảng xét các trường hợp
x + 1 | 1 | 13 | -1 | -13 |
y + 2 | 13 | 1 | -13 | -1 |
x | 0 | 12 | -2 | -14 |
y | 11 | -1 | -15 | -3 |
Vậy các cặp (x;y) thỏa là (0;11) ; (12 - 1) ; (-2;-15) ; (-14 ; -3)
xy + 2x + y = 11
giúp mình vs ạ...5* luôn ạ
bài 1: tìm cặp số (x,y) thỏa mãn đẳng thức:
x^2( x+3) + y^2(x+5) -(x+y)(x^2-xy+y^2) =0
bài 2: hai số x và y thỏa mãn các điều kiện x+y=-1 và xy=-12. tính giá trị của các biểu thức sau:
a)A=x^2+2xy+y^2 b) B=x^2+y^2 c)C=x^3+3x^2y+3xy^2+y^3 d) D=x^3+y^3
CHO CÁC SỐ NGUYÊN DƯƠNG X Y THỎA MÃN ĐIỀU KIỆN X²+y²+2xy-4x-2y+1=0.Chứng minh rằng x là số chẵn và x:2 là số chính phương
Ta có: x2+y2+2xy-4x-2y+1=0
⇔(x2+y2+2xy-2x-2y+1)-2x=0
⇔(x+y-1)2=2x
Mà (x+y-1)2 là số chính phương
⇒2x là số chính phương
⇒2x chia 4 dư 0 hoặc 1
Mà 2x là số chẵn
⇒2x chia hết cho 4
⇒x chia hết cho 2
⇒x là số chẵn(đpcm)
Lại có:(x+y-1)2=2x
⇒\(\dfrac{\left(x+y-1\right)^2}{2}\)=x
⇒\(\dfrac{\left(x+y-1\right)^2}{2}\): 2=x:2
⇒\(\dfrac{\left(x+y-1\right)^2}{2}\). \(\dfrac{1}{2}\) =x:2
⇒\(\dfrac{\left(x+y-1\right)^2}{4}\)=x:2
⇒(\(\dfrac{x+y-1}{2}\))2=x:2
Mà \(\left(\dfrac{x+y-1}{2}\right)^2\) là số chính phương
⇒x:2 là số chính phương (đpcm)
Cho các số nguyên dương thỏa mãn điều kiện x²+y²+2xy-4x-2y+1=0. Chứng minh rằng x là số chắn và x:2 là số chính phương
Cho x và y là hai đại lượng tỉ lệ thuận . Biết rằng với hai giá trị x1 , x2 của x thỏa mãn điều kiện 2x1 - 3x2 = 42,5 thì hai giá trị tương ứng y1 ; y2 của y thỏa mãn điều kiện 2y1 - 3y2 = -8,5 .Hỏi hai đại lượng x và y liên hệ với nhau bởi công thức nào ?
Theo tính chất của tỉ lệ thuận có:
\(\frac{x_1}{y_1}=\frac{x_2}{y_2}=\frac{2x_1}{2y_1}=\frac{3x_2}{3y_2}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x_1}{y_1}=\frac{x_2}{y_2}=\frac{2x_1}{2y_1}=\frac{3x_2}{3y_2}=\frac{2x_1-3x_2}{2y_1-3y_2}=\frac{42,5}{-8,5}=-5\)
=> x1 = -5.y1
Vậy 2 đại lượng x và y liên hệ với nhau bởi công thức x = -5.y
cho x;y thỏa mãn: 3x2+3y2+4xy+2x-2y+2=0
tính giá trị bt: M = (x+y)2013+(x+2)2014+(y-1)2015
giúp mhnhf vs nha