Tìm giá trị nhỏ nhất của
A=|2x-2|+|2x-2013| với x thuộc Z
Tìm giá trị nhỏ nhất của
A=|2x-2|+|2x-2013| với x thuộc Z
\(A=!2x-2!+!2x-2013!\ge!2x-2-\left(2x-2013\right)!=2011\)
đẳng thức khi (2x-2)(2x-2013)<=0 tự giải nếu cần đề bài không yêu cầu
cách khác chia khoảng: xét khoảng x=1 và x=2013/2
với x<0 ta có
A=-2x+2-2x+2013=-4x+2015 hiển nhiên x càng nhỏ A càng lớn
với 0<=0<1 A=-4x+2015 hiển nhiên A nhỏ nhất khi x tiến dần đến 1 hay A tiến dần đến 2011
với 1<=x<2013/2=> A=2x-2-2x+2013=2011 A là hằng số
với x>=2013/2=> A=2x-2+2x-2013=4x-2015 hiển nhiên x càng lớn A càng lớn GTNN khi x=2013/2=> A=2011
cách này phá trị tuyệt đối dài dòng lắm
Các bạn chú ý khi chọn lớp nhé Vì một bài toán có n! cách giải
cách giải tốt nhất là phù hợp nhất với trình độ của mình
1.Tìm nghiệm nguyên dương của phương trình x+y+z=xyz
2.tìm giá trị nhỏ nhất của biểu thức A=giá trị tuyệt đối của 2x+2 cộng với giá trị tuyệt đối của 2x-2013
Không làm mất tính tổng quát, giả sử \(0< x\le y\le z\)
=> \(x+y+z\le3z\Leftrightarrow xyz\le3z\Leftrightarrow xy\le3\)
Mà x;y;z là các số nguyên dương => \(xy\in\left\{1;2;3\right\}\)
Ta xét các trường hợp:
TH1: \(xy=1\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow2+z=z\Leftrightarrow2=0\) (vô lý!)
TH2: \(xy=2\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\Leftrightarrow z=3\) (thỏa mãn)
TH3: \(xy=3\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\Leftrightarrow z=2\) (thỏa mãn)
Vậy (x;y;z) là các hoán vị của (1;2;3)
\(A=\left|2x+2\right|+\left|2x-2013\right|=\left|2x+2\right|+\left|2013-2x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)với \(ab\ge0\)
=>\(A=\left|2x+2\right|+\left|2013-2x\right|\ge\left|2x+2+2013-2x\right|=2015\)
với \(\left(2x+2\right)\left(2013-2x\right)\ge0\)
=>\(A_{min}=2015\) với \(-0,5\le x\le1006,5\)
Tìm giá trị nhỏ nhất của biểu thức A=|2x-2|+|2x-2013| với x là số nguyên
Vì|2x-2|và|2x-2013| lớn hơn hoặc bằng 0 với mọi x thuộc R(Ko thấy kí hiệu đâu cả)
Để A nhỏ nhất suy ra tổng 2 số hạng trên nhỏ nhất
TH1: |2x-2|=0 Suy ra 2x=2=>x=1
A= 0+|2.2-2013|=2009
TH2:|2x-2013|=0=>2x=2013=>x=1006,5
A=|2x-2|+|2x-2013|=|2.1006,5-2|=2011
Vì 2011>2009 suy ra MinA =2009
Vì|2x-2|và|2x-2013| lớn hơn hoặc bằng 0 với mọi x thuộc R(Ko thấy kí hiệu đâu cả)
Để A nhỏ nhất suy ra tổng 2 số hạng trên nhỏ nhất
TH1: |2x-2|=0 Suy ra 2x=2=>x=1
A= 0+|2.2-2013|=2009
TH2:|2x-2013|=0=>2x=2013=>x=1006,5
A=|2x-2|+|2x-2013|=|2.1006,5-2|=2009
MinA =2009
Áp dụng BĐT trị tuyệt đối ta có:
\(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\ge\left|2x-2+2013-2x\right|=2011\)
\(\Rightarrow A_{min}=2011\)
Dấu "=" xảy ra khi \(\left(2x-2\right)\left(2013-2x\right)\ge0\Rightarrow1\le x\le1006\)
tìm giá trị nhỏ nhất của biểu thức A=|2x-2|+|2x-2013|với x là số nguyên
vào phần câu hỏi tương tự là có đáp án nhek bn
Ta có \(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\)
Ta thấy \(A=\left|2x-2\right|+\left|2013-x\right|\ge\left|2x-2+2013-2x\right|=2011\) ra
Dấu " = " xảy ra khi và chỉ khi \(\left(2x-2\right).\left(2013-2x\right)\ge0\)
\(\Leftrightarrow\frac{2013}{2}\ge x\ge1\)
Vậy .....
sai rồi để A nhỏ nhất thì phải bằng 1
3/ Tìm giá trị nhỏ nhất của biểu thức A= |2x-2|+|2x-2013| với x là số nguyên
A=|2x-2|+|2x-2013|=|2x-2|+|2013-x|
Áp dụng BĐT:|a|+|b|>=|a+b|
Ta có:|2x-2|+|2013-x|>=|2x-2+2013-2x|=2011
Dấu "=" xảy ra<=>(2x-2)(2013-2x)>=0<=>1<=x<=2013/2
Tìm giá trị nhỏ nhất của biểu thức
A = |2x + 2| + |2x - 2013| với x là số nguyên
Ta có : A = |2x+2|+|2x-2013|
A = |2x+2|+|2013-2x| \(\ge\)2x+2+2013-2x=2015
Dấu ''='' xảy ra khi \(\hept{\begin{cases}2x+2\ge0\\2013-2x\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}2x\ge2\\2x\le2013\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le1006\end{cases}}\)\(\left(x\in Z\right)\)\(\Leftrightarrow1\le x\le1006\)
Vậy để A = |2x+2|+|2x-2013| đạt GTNN là 2015 thì \(1\le x\le1006\)
Hok tốt
ta có
A = |2x + 2| + |2x - 2013|
|2x + 2| \(\ge\) \(2x+2\)\(\forall\) \(x\in Z\)
|2x - 2013| \(\ge\) \(2013-2x\) \(\forall\) \(x\in Z\)
\(\Rightarrow\text{}\) A = |2x + 2| + |2x - 2013| \(\ge\)\(2x+2\) + \(2013-2x\) \(=\) \(2015\) \(\forall\)\(x\in Z\)
dấu bằng xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}2x+2\ge0\\2013-2x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}2x\ge-2\\x\le1006\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le1006\end{cases}}}\)
vậy min A=2015 \(\Leftrightarrow\) \(-1\le x\le1006\)
tìm giá trị nhỏ nhất của biểu thức A = |2x+2| + |2x-2013| với x là số nguyên
3)
a/Tìm giá trị nhỏ nhất của biểu thức A=\(2x-2|+|2x-2013||\)\(|\)với x là số nguyên.
b/Tìm nghiệm nguyên dương của phương trình x+y+z=xyz
a) Ta có: \(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\ge\left|2x-2+2013-2x\right|=2011\)
Dấu "=" xảy ra khi: \(1\le x\le\frac{2013}{2}\)
b) Không mất tính tổng quát giả sử: \(x\ge y\ge z>0\) ta có: \(x+y+z\le x+x+x=3x\Leftrightarrow xyz\le3x\Leftrightarrow yz\le3\)
Vì \(x;y;z\) là số nguyên dương nên: \(yz\in\left\{1;2;3\right\}\)
Với \(yz=1\Leftrightarrow y=z=1\Leftrightarrow x+2=x\left(l\right)\)
Với \(yz=2\Leftrightarrow y=2;z=1\left(y\ge z\right)\Leftrightarrow x=3\)
Với \(yz=3\Leftrightarrow y=3;z=1\left(y\ge z\right)\Leftrightarrow x=2\)
Vậy: \(x;y;z\) là hoán vị của 1;2;3 hay:
\(\left(x;y;z\right)=\left\{3;2;1\right\};\left(3;1;2\right);\left(2;1;3\right);\left(2;3;1\right);\left(1;2;3\right);\left(1;3;2\right)\)