Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Thành Dương
Xem chi tiết
ngonhuminh
8 tháng 1 2017 lúc 21:24

\(A=!2x-2!+!2x-2013!\ge!2x-2-\left(2x-2013\right)!=2011\)

đẳng thức khi (2x-2)(2x-2013)<=0 tự giải nếu cần đề bài không yêu cầu

ngonhuminh
8 tháng 1 2017 lúc 21:47

cách khác chia khoảng:  xét khoảng x=1 và x=2013/2

với x<0 ta có 

A=-2x+2-2x+2013=-4x+2015  hiển nhiên x càng nhỏ A càng lớn

với 0<=0<1 A=-4x+2015 hiển nhiên A nhỏ nhất khi x tiến dần đến 1 hay A tiến dần đến 2011

với 1<=x<2013/2=> A=2x-2-2x+2013=2011  A là hằng số

với x>=2013/2=> A=2x-2+2x-2013=4x-2015 hiển nhiên x càng lớn A càng lớn GTNN khi x=2013/2=> A=2011

cách này phá trị tuyệt đối dài dòng lắm  

ngonhuminh
9 tháng 1 2017 lúc 22:46

Các bạn chú ý khi chọn lớp nhé Vì một bài toán có n! cách giải

cách giải tốt nhất là phù hợp nhất với trình độ của mình

Le Thi Phuong Thao
Xem chi tiết
Jenny123
4 tháng 1 2017 lúc 15:21

bài dễ ợt mà làm ko đc

Trà My
4 tháng 1 2017 lúc 15:37

Không làm mất tính tổng quát, giả sử \(0< x\le y\le z\)

=> \(x+y+z\le3z\Leftrightarrow xyz\le3z\Leftrightarrow xy\le3\)

Mà x;y;z là các số nguyên dương => \(xy\in\left\{1;2;3\right\}\)

Ta xét các trường hợp: 

TH1: \(xy=1\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow2+z=z\Leftrightarrow2=0\) (vô lý!)

TH2: \(xy=2\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\Leftrightarrow z=3\) (thỏa mãn)

TH3: \(xy=3\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\Leftrightarrow z=2\) (thỏa mãn)

Vậy (x;y;z) là các hoán vị của (1;2;3)

Trà My
4 tháng 1 2017 lúc 15:58

\(A=\left|2x+2\right|+\left|2x-2013\right|=\left|2x+2\right|+\left|2013-2x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)với \(ab\ge0\)

=>\(A=\left|2x+2\right|+\left|2013-2x\right|\ge\left|2x+2+2013-2x\right|=2015\) 

với \(\left(2x+2\right)\left(2013-2x\right)\ge0\)

=>\(A_{min}=2015\) với  \(-0,5\le x\le1006,5\)

Kudo Shinichi
Xem chi tiết
Pika Pika
20 tháng 5 2021 lúc 14:38

Vì|2x-2|và|2x-2013| lớn hơn hoặc bằng 0 với mọi x thuộc R(Ko thấy kí hiệu đâu cả)

Để A nhỏ nhất suy ra tổng 2 số hạng trên nhỏ nhất

TH1: |2x-2|=0 Suy ra 2x=2=>x=1

A= 0+|2.2-2013|=2009

TH2:|2x-2013|=0=>2x=2013=>x=1006,5

A=|2x-2|+|2x-2013|=|2.1006,5-2|=2011

Vì 2011>2009 suy ra MinA =2009

 

Pika Pika
20 tháng 5 2021 lúc 15:14

Vì|2x-2|và|2x-2013| lớn hơn hoặc bằng 0 với mọi x thuộc R(Ko thấy kí hiệu đâu cả)

Để A nhỏ nhất suy ra tổng 2 số hạng trên nhỏ nhất

TH1: |2x-2|=0 Suy ra 2x=2=>x=1

A= 0+|2.2-2013|=2009

TH2:|2x-2013|=0=>2x=2013=>x=1006,5

A=|2x-2|+|2x-2013|=|2.1006,5-2|=2009

 MinA =2009

Thu Thao
20 tháng 5 2021 lúc 15:38

undefined

kim taehyung
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 1 lúc 21:12

Áp dụng BĐT trị tuyệt đối ta có:

\(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\ge\left|2x-2+2013-2x\right|=2011\)

\(\Rightarrow A_{min}=2011\)

Dấu "=" xảy ra khi \(\left(2x-2\right)\left(2013-2x\right)\ge0\Rightarrow1\le x\le1006\)

Trần Việt Hoàng
Xem chi tiết
Yuuki Akastuki
27 tháng 5 2018 lúc 19:19

vào phần câu hỏi tương tự là có đáp án nhek bn

Kaori Miyazono
27 tháng 5 2018 lúc 19:22

Ta có \(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\)

Ta thấy \(A=\left|2x-2\right|+\left|2013-x\right|\ge\left|2x-2+2013-2x\right|=2011\) ra

Dấu " = " xảy ra khi và chỉ khi \(\left(2x-2\right).\left(2013-2x\right)\ge0\)

\(\Leftrightarrow\frac{2013}{2}\ge x\ge1\)

Vậy .....

phan huy hồng phúc
22 tháng 1 2020 lúc 17:25

sai rồi để A nhỏ nhất thì phải bằng 1

Khách vãng lai đã xóa
Quang Hùng and Rum
Xem chi tiết
Hoàng Phúc
21 tháng 4 2016 lúc 15:46

A=|2x-2|+|2x-2013|=|2x-2|+|2013-x|

Áp dụng BĐT:|a|+|b|>=|a+b|

Ta có:|2x-2|+|2013-x|>=|2x-2+2013-2x|=2011

Dấu "=" xảy ra<=>(2x-2)(2013-2x)>=0<=>1<=x<=2013/2

Hồ Thị Hạnh
Xem chi tiết

Ta có : A = |2x+2|+|2x-2013|

           A = |2x+2|+|2013-2x| \(\ge\)2x+2+2013-2x=2015

    Dấu ''='' xảy ra khi \(\hept{\begin{cases}2x+2\ge0\\2013-2x\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}2x\ge2\\2x\le2013\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le1006\end{cases}}\)\(\left(x\in Z\right)\)\(\Leftrightarrow1\le x\le1006\)

Vậy để A = |2x+2|+|2x-2013| đạt GTNN là 2015 thì \(1\le x\le1006\)

Hok tốt

Khách vãng lai đã xóa

ta có

A = |2x + 2| + |2x - 2013|

 |2x + 2| \(\ge\) \(2x+2\)\(\forall\)  \(x\in Z\)

  |2x - 2013|  \(\ge\) \(2013-2x\)   \(\forall\) \(x\in Z\)

\(\Rightarrow\text{​​}\) A = |2x + 2| + |2x - 2013|  \(\ge\)\(2x+2\)  +   \(2013-2x\)  \(=\)       \(2015\)         \(\forall\)\(x\in Z\)

dấu bằng xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}2x+2\ge0\\2013-2x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}2x\ge-2\\x\le1006\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le1006\end{cases}}}\)

vậy min A=2015  \(\Leftrightarrow\)  \(-1\le x\le1006\)

Khách vãng lai đã xóa
Nguyễn Đức Anh
Xem chi tiết
TPK Channel
Xem chi tiết
Girl
4 tháng 3 2018 lúc 20:39

a) Ta có: \(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\ge\left|2x-2+2013-2x\right|=2011\)

Dấu "=" xảy ra khi: \(1\le x\le\frac{2013}{2}\)

b) Không mất tính tổng quát giả sử: \(x\ge y\ge z>0\) ta có: \(x+y+z\le x+x+x=3x\Leftrightarrow xyz\le3x\Leftrightarrow yz\le3\)

Vì \(x;y;z\) là số nguyên dương nên: \(yz\in\left\{1;2;3\right\}\)

Với \(yz=1\Leftrightarrow y=z=1\Leftrightarrow x+2=x\left(l\right)\)

Với \(yz=2\Leftrightarrow y=2;z=1\left(y\ge z\right)\Leftrightarrow x=3\)

Với \(yz=3\Leftrightarrow y=3;z=1\left(y\ge z\right)\Leftrightarrow x=2\)

Vậy: \(x;y;z\) là hoán vị của 1;2;3 hay:

\(\left(x;y;z\right)=\left\{3;2;1\right\};\left(3;1;2\right);\left(2;1;3\right);\left(2;3;1\right);\left(1;2;3\right);\left(1;3;2\right)\)