So sánh căn x/ x + căn x + 1 với 1/3
so sánh căn x + 1 phần căn x + 2 với 1
so sánh căn x + 1 phần căn x + 2 với căn x + 1 phần căn x + 2 tất cả bình phương
a) Có \(x+1< x+2\)
\(\Rightarrow\sqrt{x+1}< \sqrt{x+2}\)
\(\Leftrightarrow\frac{\sqrt{x+1}}{\sqrt{x+2}}< 1\)
b) Vì \(\sqrt{x+1}< \sqrt{x+2}\)
\(\Rightarrow\sqrt{x+1}.\sqrt{x+1}.\sqrt{x+2}< \sqrt{x+2}.\sqrt{x+1}.\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{x+1}^2.\sqrt{x+2}< \sqrt{x+2}^2.\sqrt{x+1}\)
\(\Rightarrow\frac{\sqrt{x+1}^2}{\sqrt{x+2}^2}< \frac{\sqrt{x+1}}{\sqrt{x+2}}\)
hay \(\frac{\sqrt{x+1}}{\sqrt{x+2}}>\frac{\sqrt{x+1}^2}{\sqrt{x+2}^2}\)
so sánh ((căn x)+3)/((căn x)-2) với 1 khi x>4
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.
so sánh P với 1 biết P=căn x- 2 trên 2 căn x +1
\(P=\dfrac{\sqrt{x}-2}{2\sqrt{x}+1}\) với \(x\ge0\)
Ta có: \(P-1=\dfrac{\sqrt{x}-2}{2\sqrt{x}+1}-1=\dfrac{\sqrt{x}-2-2\sqrt{x}-1}{2\sqrt{x}+1}=-\dfrac{\sqrt{x}+3}{2\sqrt{x}+1}\)
Do \(\sqrt{x}\ge0;\forall x\ge0\)
\(\Rightarrow\dfrac{\sqrt{x}+3}{2\sqrt{x}+1}>0\Rightarrow-\dfrac{\sqrt{x}+3}{2\sqrt{x}+1}< 0\)
\(\Rightarrow P-1< 0\Rightarrow P< 1\)
so sánh căn x + 1 phần căn x + 2 với 1
1. So sánh 1+căn 15 và căn 24
2.Giải phương trình
a. x^3-5x^2=2x^2-10
b.3x-7 căn x= 20
c.1+ căn 3x > 3
d. x^2 - x căn x - 5x - căn x - 6 = 0
1/
Ta có: \(\left(1+\sqrt{15}\right)^2\)= 1 + 15 + \(2\sqrt{15}\)= 16 + \(2\sqrt{15}\)
\(\sqrt{24}^2\)= 24 = 16 + 8
Vì: \(\sqrt{15}^2\)= 15 < 16 =\(4^2\)
Nên: \(\sqrt{15}< 4\)
=> \(2\sqrt{15}< 8\)
=> \(16+2\sqrt{15}< 24\)
=> \(\left(1+\sqrt{15}\right)^2< \sqrt{24}^2\)
Vậy \(1+\sqrt{15}< \sqrt{24}\)
2/
b/ \(3x-7\sqrt{x}=20\)\(\left(x\ge0\right)\)
<=> \(3x-7\sqrt{x}-20=0\)
<=> \(3x-12\sqrt{x}+5\sqrt{x}-20=0\)
<=> \(3\sqrt{x}\left(\sqrt{x}-4\right)+5\left(\sqrt{x}-4\right)=0\)
<=> \(\left(\sqrt{x}-4\right)\left(3\sqrt{x}+5\right)=0\)
<=> \(\sqrt{x}-4=0\)hoặc \(3\sqrt{x}+5=0\)
<=> \(\sqrt{x}=4\)hoặc \(3\sqrt{x}=-5\)(vô nghiệm)
<=> \(x=16\)
Vậy S=\(\left\{16\right\}\)
c/ \(1+\sqrt{3x}>3\)
<=> \(\sqrt{3x}>2\)
<=> \(3x>4\)
<=> \(x>\frac{4}{3}\)
d/ \(x^2-x\sqrt{x}-5x-\sqrt{x}-6=0\)(\(x\ge0\))
<=> \(\left(x^2-5x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)
<=> \(\left(x^2-6x+x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)
<=> \([x\left(x-6\right)+\left(x-6\right)]-\sqrt{x}\left(x+1\right)=0\)
<=> \(\left(x-6\right)\left(x+1\right)-\sqrt{x}\left(x+1\right)=0\)
<=> \(\left(x+1\right)\left(x-6-\sqrt{x}\right)=0\)
<=> \(\left(x+1\right)\left(x-3\sqrt{x}+2\sqrt{x}-6\right)=0\)
<=> \(\left(x+1\right)[\sqrt{x}\left(\sqrt{x}-3\right)+2\left(\sqrt{x}-3\right)]=0\)
<=> \(\left(x+1\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=0\)
<=> \(x+1=0\) hoặc \(\sqrt{x}-3=0\)hoặc \(\sqrt{x}+2=0\)
<=> \(x=-1\)(loại) hoặc \(x=9\)hoặc \(\sqrt{x}=-2\)(vô nghiệm)
Vậy S={ 9 }
3) So sánh
a. x=căn bậc của 40+2 và y=căn bậc 40 + căn bậc 2
b. x=căn bậc 625 -1/5 và y=căn bậc 576 - 1/căn bậc 6 + 1
a) Ta có : \(x=\sqrt{40+2}=\sqrt{42}< \sqrt{49}=7\) (1)
\(y=\sqrt{40}+\sqrt{2}>\sqrt{36}+\sqrt{1}=6+1=7\) (2)
Từ (1) và (2) => x = y
b) Ta có : \(x=\sqrt{625}-\frac{1}{\sqrt{5}}=25-\frac{1}{\sqrt{5}}\) (1)
\(y=\sqrt{576}-\frac{1}{\sqrt{6}}+1=24-\frac{1}{\sqrt{6}}+1=25-\frac{1}{\sqrt{6}}\) (2)
Vì \(\sqrt{5}< \sqrt{6}\)nên \(\frac{1}{\sqrt{5}}>\frac{1}{\sqrt{6}}\)(3)
(1),(2),(3) => \(x>y\)
Mà Mun Già ơi, chỗ mà câu a đó, KL hình như sai rồi, từ (1) và (2) suy ra x<y chứ sao = nhau đc
Kim Miso nhầm,bạn sửa câu a,b đều là " < "nhé
Cho bt sau
E= {[(x+2 căn x)/(x + 4 căn x +4]+2x/4-x}:{[(căn x -1)/(x-2 căn x)-(2 căn x +2)/(x + căn x)]}
a) Rút gọn E
b) So sánh E với căn x Khi x >9
c) Tìm x để k=2E/căn x có gt Z
giúp mình nhanh với khoảng đến hơn 4h thôi nhé mình sắp đi hc r
tìm x : a/ căn bậc hai của x=x; b/ căn bậc hai của x < căn bậc hai của 2x-1 ; d/ căn bậc hai của x+2 = căn bậc hai của 4-x
so sánh : a/ căn bậc hai của 3-5 và -2 ; b/ căn bậc hai của 2+ căn bậc hai của 3 và 2
ĐKXĐ: x>=0
a: P=1/2
=>\(\dfrac{\sqrt{x}+2}{\sqrt{x}+5}=\dfrac{1}{2}\)
=>\(2\sqrt{x}+4=\sqrt{x}+5\)
=>\(\sqrt{x}=1\)
=>x=1(nhận)
b: \(P^2-P=P\left(P-1\right)\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+5}\cdot\dfrac{\sqrt{x}+2-\sqrt{x}-5}{\sqrt{x}+5}\)
\(=\dfrac{-3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+5\right)^2}< 0\)
=>\(P^2< P\)
c: Để P nguyên thì \(\sqrt{x}+2⋮\sqrt{x}+5\)
=>\(\sqrt{x}+5-3⋮\sqrt{x}+5\)
=>\(\sqrt{x}+5\inƯ\left(-3\right)\)
=>\(\sqrt{x}+5\in\left\{1;-1;3;-3\right\}\)
=>\(\sqrt{x}\in\left\{-4;-6;-2;-8\right\}\)
=>\(x\in\varnothing\)
1) Với các giá trị nào của x thì 3/4x-1>1/2x+5
2) Tim các số a và b sao cho:
a. a+b=lal+lbl
b. a+b=lal-lbl
c. a+b=lbl-lal
3) So sánh
a. x=căn bậc của 40+2 và y=căn bậc 40 + căn bậc 2
b. x=căn bậc 625 -1/5 và y=căn bậc 576 - 1/căn bậc 6 + 1