Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tui Là L-girl
Xem chi tiết
nguyễn duy luân
Xem chi tiết
KAl(SO4)2·12H2O
6 tháng 9 2019 lúc 18:34

a) \(\sqrt{x}\)\(\sqrt{2x-1}\)

x < 2x - 1

x - 2x < -1

-x < -1

x > 1

b) \(\sqrt{x}\le\sqrt{x+1}\)

< x + 1

< 1

không có x tm

Thuý Vũ
Xem chi tiết
An Nguyễn
Xem chi tiết
Nguyễn Tuấn Minh
Xem chi tiết
Trần Thị Thu Hường
1 tháng 10 2017 lúc 21:53

\(\frac{1}{x-\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}-1}\div\frac{2}{x-1}+\frac{1}{\sqrt{x}+1}.\)

=\(\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}-1}\right)\div\frac{2}{\left(\sqrt{x}-1\right)\times\left(\sqrt{x}+1\right)}+\frac{1}{\sqrt{x}+1}\)

\(=\left(\frac{1+x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\div\frac{2+\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\times\left(\sqrt{x}+1\right)}\)

\(=\frac{1+x}{\sqrt{x}\times\left(\sqrt{x}-1\right)}\times\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\frac{\left(1+x\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\times\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{1+x}{\sqrt{x}}\)

Tiếng anh123456
Xem chi tiết
HT.Phong (9A5)
11 tháng 8 2023 lúc 10:57

a) \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{x\sqrt{x}-1}{x\sqrt{x}-\sqrt{x}}\right)\)

\(P=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(P=\left(\dfrac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(P=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)

\(P=\dfrac{1}{\sqrt{x}-1}\)

b) P = \(\dfrac{1}{2}\) khi:

\(\dfrac{1}{\sqrt{x}-1}=\dfrac{1}{2}\)

\(\Rightarrow2=\sqrt{x}-1\)

\(\Rightarrow\sqrt{x}=3\)

\(\Rightarrow x=9\left(tm\right)\)

Nguyễn Lê Phước Thịnh
11 tháng 8 2023 lúc 10:51

a: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{x-1}\right):\dfrac{x\sqrt{x}-1}{x\sqrt{x}-\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{1}{\sqrt{x}-1}\)

b: P=1/2

=>căn x-1=2

=>căn x=3

=>x=9

Thảo Nguyên 2k11
11 tháng 8 2023 lúc 11:35

a) Để rút gọn biểu thức P, ta thực hiện các bước sau: P = [(1/(x-√x)) + (√x/(x-1))] : [(x√x-1)/(x√x-√x)] Đầu tiên, ta nhân tử và mẫu của phân số bên trái với (x-√x) để loại bỏ mẫu phân số trong dấu ngoặc: P = [(1/(x-√x)) * (x-√x) + (√x/(x-1)) * (x-√x)] : [(x√x-1)/(x√x-√x)] P = [1 + (√x * (x-√x))/(x-1)] : [(x√x-1)/(x√x-√x)] Tiếp theo, ta nhân tử và mẫu của phân số bên phải với (x√x+√x) để loại bỏ mẫu phân số trong dấu ngoặc: P = [1 + (√x * (x-√x))/(x-1)] * [(x√x+√x)/(x√x+√x)] : [(x√x-1)/(x√x-√x)] P = [(x√x+√x + √x * (x-√x))/(x-1)] * [(x√x+√x)/(x√x-1)] P = [(x√x+√x + √x * (x-√x)) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x√x+√x + √x * (x-√x)) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x^2 + 2√x + x - x) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x^2 + 2√x) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x^2 + 2√x) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x^3 + 3x√x + 2x)] / [(x-1) * (x√x-1)] P = (x^3 + 3x√x + 2x) / (x^2√x - x√x - x + 1) Vậy biểu thức P sau khi rút gọn là (x^3 + 3x√x + 2x) / (x^2√x - x√x - x + 1). b) Để tìm x để P = 1/2, ta giải phương trình: (x^3 + 3x√x + 2x) / (x^2√x - x√x - x + 1) = 1/2 Nhân cả hai vế của phương trình với (x^2√x - x√x - x + 1) để loại bỏ mẫu phân số: 2(x^3 + 3x√x + 2x) = x^2√x - x√x - x + 1 2x^3 + 6x√x + 4x = x^2√x - x√x - x + 1 2x^3 + 6x√x + 4x - x^2√x + x√x + x - 1 = 0 2x^3 + 5x√x + 5x - x^2√x - 1 = 0 Đây là phương trình không thể giải bằng phép tính đơn giản. Ta có thể sử dụng phương pháp số học hoặc phương pháp đồ thị để tìm nghiệm của phương trình này.

Lê Minh Thuận
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 1 lúc 20:36

Em ghi đề bằng latex đi, thế này ko dịch ra được

Dương Dương Yang Yang
Xem chi tiết
Tùng nguyễn
Xem chi tiết