cho ba số a,b,c thỏa mãn 3(a+b)= 5 (b+c)= 4a+ 3c chứng tỏ a=3b-3c
Cho ba số a, b, c thỏa mãn 3(à+b)=5(b+c)=4a+3c. Chứng tỏ a=3a-3c
Cho a,b,c là ba số dương thỏa mãn a + b +c = 3 . Chứng minh rằng : \(\dfrac{\sqrt{3a+bc}}{a+\sqrt{3a+bc}}+\dfrac{\sqrt{3b+ac}}{b+\sqrt{3b+ac}}+\dfrac{\sqrt{3c+ab}}{c+\sqrt{3c+ab}}\) ≥ 2
Cho ba số a; b; c > 0 thỏa mãn: \(\dfrac{a+b-3c}{c}=\dfrac{b+c-3a}{a}=\dfrac{c+a-3b}{b}\)
Chứng minh rằng a = b =c.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b-3c}{c}=\dfrac{b+c-3a}{a}=\dfrac{c+a-3b}{b}=\dfrac{a+b-3c+b+c-3a+c+a-3b}{c+a+b}=\dfrac{-\left(a+b+c\right)}{a+b+c}=-1\)
\(\dfrac{a+b-3c}{c}=-1\Rightarrow a+b-3c=-c\Rightarrow a+b-2c=0\left(1\right)\)
\(\dfrac{b+c-3a}{a}=-1\Rightarrow b+c-3a=-a\Rightarrow b+c-2a=0\left(2\right)\)
\(\dfrac{c+a-3b}{b}=-1\Rightarrow a+c-3b=-b\Rightarrow a+c-2b=0\left(3\right)\)
Từ (1), (2) ta có:\(a+b-2c=b+c-2a\Rightarrow3a=3c\Rightarrow a=c\left(4\right)\)
Từ (1), (3) ta có:\(a+b-2c=a+c-2b\Rightarrow3b=3c\Rightarrow b=c\left(5\right)\)
Từ (4), (5)\(\Rightarrow a=b=c\)
BĐT cần chứng minh tương đương:
\(\dfrac{a}{a+\sqrt{3a+bc}}+\dfrac{b}{b+\sqrt{3b+ca}}+\dfrac{c}{c+\sqrt{3c+ab}}\le1\)
Ta có:
\(\dfrac{a}{a+\sqrt{3a+bc}}=\dfrac{a}{a+\sqrt{a\left(a+b+c\right)+bc}}=\dfrac{a}{a+\sqrt{\left(a+b\right)\left(c+a\right)}}\le\dfrac{a}{a+\sqrt{\left(\sqrt{ab}+\sqrt{ac}\right)^2}}\)
\(=\dfrac{a}{a+\sqrt{ab}+\sqrt{ac}}=\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tương tự:
\(\dfrac{b}{b+\sqrt{3b+ca}}\le\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
\(\dfrac{c}{c+\sqrt{3c+ab}}\le\dfrac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Cộng vế:
\(\dfrac{a}{a+\sqrt{3a+bc}}+\dfrac{b}{b+\sqrt{3b+ca}}+\dfrac{c}{c+\sqrt{3c+ab}}\le\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho a,b,c là 3 số dương thỏa mãn a+b+c=3. Chứng minh rằng :\(\dfrac{\sqrt{3a+bc}}{a+\sqrt{3a+bc}}+\dfrac{\sqrt{3b+ac}}{b+\sqrt{3b+ac}}+\dfrac{\sqrt{3c+ab}}{c+\sqrt{3c+ab}}\)≥ 2
Với a,b,c thuộc R thỏa mãn :
CMR : (a+2b)(b+2c)(c+2a)=1
Lời giải:
Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z
Khi đó, điều kiện đb tương đương với:
(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24
⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24
⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1
Do đó ta có đpcm
Lời giải:
Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z
Khi đó, điều kiện đb tương đương với:
(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24
⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24
⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1
Do đó ta có đpcm
Cho ba số a,b,c>0 thỏa mãn\(\frac{a+b-3c}{c}=\frac{b+c-3a}{a}=\frac{c+a-3b}{b}\)Chứng minh rằng a=b=c
Theo tc của DTSBN
\(\frac{a+b-3c}{c}=\frac{b+c-3a}{a}=\frac{c+a-3b}{b}=\frac{a+b-3c+b+c-3a+c+a-3b}{c+a+b}\)
\(=\frac{-a-b-c}{a+b+c}=-1\)
\(\Rightarrow\hept{\begin{cases}a+b-3c=-c\\b+c-3a=-a\\c+a-3b=-b\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
Cho a,b,c thỏa mãn (3a+3b+3c)3 = 24 + (3a+b-c)3 + (3b+c-a)3 + (3c+a-b)3 chứng minh (a+2b)(b+2c)(c+2a)=1
Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath
Cho các số thực dương a,b, c thỏa mãn a+b+c=3. Chứng minh rằng:
\(\sqrt{a^3+3b}\) + \(\sqrt{b^3+3c}\) + \(\sqrt{c^3+3a}\) ≥ 6
Bổ đề: \(a^3+b^3+c^3\ge\dfrac{1}{9}\left(a+b+c\right)^3\) \(\left(\forall a,b,c>0\right)\)
chứng minh bổ đề: \(\Sigma_{cyc}\left(\dfrac{a^3}{a^3+b^3+c^3}\right)+\dfrac{1}{3}+\dfrac{1}{3}\ge3\sqrt[3]{\left(\Pi_{cyc}\dfrac{a^3}{a^3+b^3+c^3}\right).\dfrac{1}{3}.\dfrac{1}{3}}\)
hoán vị theo a,b,c
ta được: \(3\ge\dfrac{3\left(a+b+c\right)}{\sqrt[3]{9.\left(a^3+b^3+c^3\right)}}\)
mũ 3 hai vế ta có được bất đẳng thức bổ đề: \(a^3+b^3+c^3\ge\dfrac{1}{9}\left(a+b+c\right)^3\)
Áp dụng bất C-S:
\(\sqrt{a^3+3b}+\sqrt{b^3+3c}+\sqrt{c^3+3a}\ge\sqrt{\left(1+1+1\right)\left(a^3+b^3+c^3+3a+3b+3c\right)}\)
\(\ge\sqrt{3.\left[3+3\left(a+b+c\right)\right]}=\sqrt{36}=6\)
Dấu "=" xảy ra tại a=b=c=1