Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hoàng Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 1 2021 lúc 19:18

a) Trường hợp 1: P=3

\(\Leftrightarrow P^2+44=3^2+44=53\) là số nguyên tố

Trường hợp 2: P>3 

\(\Leftrightarrow\)P=3k+1 hoặc P=3k+2(\(k\in N\))

Với P=3k+1(\(k\in N\))

\(\Leftrightarrow P^2+44=\left(3k+1\right)^2+44=9k^2+6k+1+44\)

\(\Leftrightarrow P^2+44=3\left(3k^2+2k+15\right)⋮3\)(loại)

Với P=3k+2(\(k\in N\))

\(\Leftrightarrow P^2+44=\left(3k+2\right)^2+44=9k^2+12k+4+44\)

\(\Leftrightarrow P^2+44=3\left(3k^2+4k+16\right)⋮3\)(loại)

Vậy: P=3

b) Với P=3 thì P+10=13 và P+14=17 đều là số nguyên tố

Với P>3 thì \(P=3k+1\) hoặc P=3k+2(\(k\in N\))

Với P=3k+1(\(k\in N\)) thì P+14=3k+1+14=3(k+5) không là số nguyên tố

=> Loại

Với P=3k+2(\(k\in N\)) thì P+10=3k+2+10=3(k+4) không là số nguyên tố

=> Loại

Vậy: P=3

Lê Hoàng Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 1 2021 lúc 14:15

Bài 4:

Vì P là số nguyên tố lớn hơn 3 nên P là số lẻ

hay P-1 và P+1 là các số chẵn

\(\Leftrightarrow\left(P-1\right)\left(P+1\right)⋮8\)

Vì P là số nguyên tố lớn hơn 3 nên P=3k+1(k∈N) hoặc P=3k+2(k∈N)

Thay P=3k+1 vào (P-1)(P+1), ta được:

\(\left(3k-1+1\right)\left(3k+1+1\right)=3k\cdot\left(3k+2\right)⋮3\)(1)

Thay P=3k+2 vào (P-1)(P+1), ta được:

\(\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\left(3k+3\right)⋮3\)(2)

Từ (1) và (2) suy ra \(\left(P-1\right)\left(P+1\right)⋮3\)

mà \(\left(P-1\right)\left(P+1\right)⋮8\)

và (3;8)=1

nên \(\left(P-1\right)\left(P+1\right)⋮24\)(đpcm)

Lê Minh
Xem chi tiết
Dinh Quang Vinh
12 tháng 12 2019 lúc 18:43

p = 3 đó.

Giả sử p khác 3.Suy ra p không chia hết cho 3 do p là số nguyên tố.

Suy ra p chia 3 dư 1 hoặc 2.

1) p chia 3 dư 1=> p=3k+1=>p^2+44=(3k+1)^2+44=9k^2+6k+45=3(3k^2+22k+15) chia hết cho 3,do đó ko là số nguyên tố

2)p chia 3 dư 2, cũng y vậy p^2+44 chia hết cho 3,do đó cũng ko là số nguyên tố

Vậy chỉ có p=3 thỏa thôi

Khách vãng lai đã xóa
Dark Học Hành
Xem chi tiết

Nếu p = 2 ⇒ p+ 2 = 4 ( loại)

Nếu p = 3 ⇒ p + 2 = 2 + 3 = 5 ( thỏa mãn)

                   p + 10 = 3 + 10 = 13 ( thỏa mãn)

Nếu p > 3 ⇒ p = 3k + 1 hoặc p = 3k + 2

Nếu  p =  3k+ 1 ⇒ p +2 = 3k + 1 + 2 = 3k + 3 ⋮ 3 (loại)

Nếu p = 3k + 2 ⇒ p + 10 = 3k + 2 + 10 = 3k + 12 ⋮ 3 (loại)

Vậy p = 3 là số nguyên tố duy nhất thỏa mãn yêu cầu đề bài

Phùng Mai Anh
Xem chi tiết
Đoreamon 6A
16 tháng 12 2016 lúc 21:49

là snt 3 đó bạn!!!

Từ Nguyễn Đức Anh
16 tháng 12 2016 lúc 21:49

, p+2, p+4 nguyên tố? 
*nếu p = 3 => p+2 = 5, p+4 = 7 là 3 số nguyên tố 

*p # 3: 
nếu p chia 3 dư 1 => p+2 chia hết cho 3 : ko là số nguyên tố 
nếu p chia 3 dư 2 => p+4 chia hết cho 3 : ko là số nguyên tố 

Vậy chỉ có số nguyên tố p duy nhất thỏa là p = 3 

TK nhé

SASUKE CỮU VĨ
16 tháng 12 2016 lúc 21:51

p=3 vì bài nầy mình được cô giạy bồi dưỡng rồi

Nguyễn Thị Thùy Liên
Xem chi tiết
Lê Quang Minh
Xem chi tiết
Hà Đăng Thuận
Xem chi tiết
bui trong thanh danh
Xem chi tiết