Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vietsub Vocaloid
Xem chi tiết
Khỉ - Music
Xem chi tiết
Yen Nhi
19 tháng 3 2022 lúc 19:20

`Answer:`

\( B=-4x^5.y+x^4.y^3-3x^2.y^3.z^2+4.x^5.y-2.y^4-x^4.y-x^4.y+3.y^4+4.y^2.x^2.z^2-y^4+\frac{1}{2}\)

\(=-4x^5y-3x^2y^3z^2+4x^y-2y^4+3y^4+4x^2y^3z^2-y^4+\frac{1}{2}\)

\(=-4x^5y+x^2y^3z^2+4x^y-2y^4+3y^4-y^4+\frac{1}{2}\)

\(=-4x^5y+x^2y^3z^2+4x^y+\frac{1}{2}\)

Khách vãng lai đã xóa
Kinogo Kiro
Xem chi tiết
VICTORY _ Như Quỳnh
30 tháng 4 2016 lúc 19:35

B=-4x^5y+x^4y^3-3x^2y^3z^2+4x^5y-2y^4-x^4y-x^4y+3y^4+4y^2x^2z^2-y^4+\(\frac{1}{2}\)

  =(-4x^5y+4x^5y)+x^4y^3-3x^2y^3z^2+(2y^4+3y^4-y^4)+(-x^4y-x^4y)+4y^2x^2z^2+\(\frac{1}{2}\)

  =x^4y^3-3y^3z^2-2x^4y+4y^2x^2z^2+\(\frac{1}{2}\)

VICTORY _ Như Quỳnh
2 tháng 5 2016 lúc 13:57

ban oi mau tra loi di

Kinogo Kiro
Xem chi tiết
Nguyễn Thị H
Xem chi tiết
Vietsub Vocaloid
Xem chi tiết
Đỗ Linh Chi
12 tháng 7 2017 lúc 16:29

* là nhân ak bn

T.Thùy Ninh
12 tháng 7 2017 lúc 16:40

đề bài you ơi!

nguyennhungoc
12 tháng 7 2017 lúc 20:02

chắc tìm x và y

Kinogo Kiro
Xem chi tiết
ngoc bich 2
Xem chi tiết
Pham Van Hung
15 tháng 8 2018 lúc 21:20

Bạn sai ở dấu bằng thứ 4. Mình làm lại nhé.

      \(\left(x+y\right)^4+x^4+y^4\)

\(=\left[\left(x+y\right)^2\right]^2+x^4+y^4\)

\(=\left(x^2+2xy+y^2\right)^2+x^4+y^4\)

\(=x^4+4x^2y^2+y^4+4x^3y+4xy^3+2x^2y^2+x^4+y^4\)

\(=2x^4+4x^3y+6x^2y^2+4xy^3+2y^4\)

\(=2\left(x^4+2x^3y+3x^2y^2+2xy^3+y^4\right)\)

\(=2.\left[\left(x^4+2x^3y+x^2y^2\right)+\left(2x^2y^2+2xy^3\right)+y^4\right]\)

\(=2.\left[\left(x^2+xy\right)^2+2.\left(x^2+xy\right).y^2+\left(y^2\right)^2\right]\)

\(=2.\left(x^2+xy+y^2\right)^2\)

Học tốt nhe.

DucDangMinh
Xem chi tiết
Toru
24 tháng 8 2023 lúc 17:32

Sửa đề: Các dấu bằng ở yêu cầu là dấu cộng.

1. Có: \(x+y=3\)

\(\Leftrightarrow\left(x+y\right)^2=3^2\)

\(\Leftrightarrow x^2+2xy+y^2=9\)

\(\Leftrightarrow x^2+y^2=9-2\cdot1=7\) (do \(xy=1\))

\(------\)

Lại có: \(x+y=3\)

\(\Leftrightarrow\left(x+y\right)^3=3^3\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=27\)

\(\Leftrightarrow x^3+y^3+3\cdot1\cdot3=27\) (do x + y = 3; xy = 1)

\(\Leftrightarrow x^3+y^3=18\)

Ta có: \(x^2+y^2=7\)

\(\Leftrightarrow\left(x^2+y^2\right)^2=7^2\)

\(\Leftrightarrow x^4+y^4+2\cdot\left(xy\right)^2=49\)

\(\Leftrightarrow x^4+y^4=49-2\cdot1=47\) (do xy = 1)

Đặng Thu Trang
Xem chi tiết