Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Huy
Xem chi tiết
Stepht Chim Ry
Xem chi tiết
NGUYỄN MINH HUY
Xem chi tiết
Nguyễn Minh Huy
Xem chi tiết
Lê Thị Thế Ngọc
Xem chi tiết
Vũ Huy Hoàng
19 tháng 6 2019 lúc 16:07

Ta luôn có:

\(xy+yz+zx\le x^2+y^2+z^2\)\(=3\); dấu "=" xảy ra ⇔\(x=y=z\)

\(x\le\frac{x^2+1}{2}\); dấu "=" xảy ra ⇔ \(x=1\)

\(y\le\frac{y^2+1}{2}\); dấu "=" xảy ra ⇔ \(y=1\)

\(z\le\frac{z^2+1}{2}\); dấu "=" xảy ra ⇔ \(z=1\)

Suy ra: \(x+y+z\le\frac{x^2+y^2+z^2+3}{2}=\frac{6}{2}=3\)

Do đó: \(P_{max}=xy+yz+zx+\frac{5}{x+y+z}\le3+\frac{5}{3}=\frac{14}{3}\)

Dấu "=" xảy ra ⇔ x=y=z=1

vietanh2004
Xem chi tiết
Trần Đình Quyết
8 tháng 4 2018 lúc 9:14

cũng bằng 3

NGUYỄN THỊ TUYẾT NHUNG
12 tháng 3 2023 lúc 21:40

=���+�+1+�����+��+�+����2��+���+��

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)

=�+��+1��+�+1

=1

 

 

Hoàng Thị Phương Ly
Xem chi tiết
Nguyễn Phương Mai
18 tháng 3 2020 lúc 21:28

cái này mik chịu, mik mới có lớp 7

Khách vãng lai đã xóa
Trần Phúc Khang
19 tháng 3 2020 lúc 11:23

1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)

Mà b+a>b-a ; p là số nguyên tố 

=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)

=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)

Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4

Mà p là số nguyên tố 

=> \(p^2\)chia 8 dư 1

=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)

+Số chính phương chia 3 luôn dư 0 hoặc 1

Mà p là số nguyên tố lớn hơn 3

=> \(p^2\)chia 3 dư 1

=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)

Từ (1);(2)=> \(a⋮12\)

Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)

Khách vãng lai đã xóa
Trần Phúc Khang
19 tháng 3 2020 lúc 11:31

2,     \(T=\frac{x}{1-yz}+\frac{y}{1-xz}+\frac{z}{1-xy}\)

Áp dụng cosi ta có \(yz\le\frac{y^2+z^2}{2}\)

=> \(\frac{x}{1-yz}\le\frac{x}{1-\frac{y^2+z^2}{2}}=\frac{2x}{2-y^2-z^2}=\frac{2x}{1+x^2}\)

Lại có \(x^2+\frac{1}{3}\ge2x\sqrt{\frac{1}{3}}\)

=> \(\frac{x}{1-yz}\le\frac{2x}{\frac{2}{3}+2x\sqrt{\frac{1}{3}}}=\frac{x}{\frac{1}{3}+x\sqrt{\frac{1}{3}}}\le\frac{x.1}{4}\left(\frac{1}{\frac{1}{3}}+\frac{1}{x\sqrt{\frac{1}{3}}}\right)=\frac{1}{4}.\left(3x+\sqrt{3}\right)\)

Khi đó \(T\le\frac{1}{4}.\left(3x+3y+3z+3\sqrt{3}\right)\)

Mà \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=\sqrt{3}\)

=> \(T\le\frac{6\sqrt{3}}{4}=\frac{3\sqrt{3}}{2}\)

Vậy \(MaxT=\frac{3\sqrt{3}}{2}\)khi \(x=y=z=\frac{1}{\sqrt{3}}\)

Khách vãng lai đã xóa
Vũ Hân
Xem chi tiết
Kudo Shinichi
Xem chi tiết
 
10 tháng 3 2019 lúc 22:01

Tham khảo lời giải tải đây nha : http://123link.vip/TJMUnni

Cold Boy
13 tháng 3 2019 lúc 21:31

v cả tham khảo =.=