cho các số thực x,y,z thỏa mãn x+y+z=5 và xy+yz+zx=8. Tìm GTLN,GTNN của x,y,z
Cho \(x;y;z>0\)
Tìm giá trị nhỏ nhất:
\(A=\dfrac{x^2}{x+yz}+\dfrac{y^2}{y+zx}+\dfrac{z^2}{z+xy}+\dfrac{9}{8\left(x^2+y^2+z^2\right)}\)
cho Q= \(\sqrt{x^2-xy+y^2}\)+ \(\sqrt{y^2-yz+z^2}\)+\(\sqrt{z^2-zx+x^2}\) với x,y,z > 0 x+y+z=3
CM : Q ≥ 3
Cho các số x, y, z > 0 thỏa mãn x + y + z = 1. Tìm GTLN của biểu thức:
\(A=\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}+2017\left(xy+yz+zx\right)\)
Cho ba số thực dương x, y, z thỏa mãn: xy+yz+zx=2017. chứng minh : \(\sqrt{\dfrac{yz}{x^2+2017}}+\sqrt{\dfrac{zx}{y^2+2017}}+\sqrt{\dfrac{xy}{z^2+2017}}\le\dfrac{3}{2}\)
a) Cho x, y, z thuộc R. Cmr: \(\left(x+y+z\right)^2>=3.\left(xy+yz+zx\right)\)
b) Cho 3 số dương x, y, z thỏa mãn x + y +z = 1. Tìm giá trị nhỏ nhất của biểu thức:
M = \(\frac{5}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}\)
Cho x;y;z>0 thỏa mãn \(x^2+y^2+z^2=3\)
chứng minh: \(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{zx}}+\dfrac{z}{\sqrt[3]{xy}}\ge xy+yz+zx\)
cho x,y,z>0 chứng minh rằng
\(\sqrt{\dfrac{x^2}{x^2+\dfrac{1}{4}xy+y^2}}+\sqrt{\dfrac{y^2}{y^2+\dfrac{1}{4}yz+z^2}}+\sqrt{\dfrac{z^2}{z^2+\dfrac{1}{4}zx+x^2}}\le2\)
Cho x, y, z > 0 thỏa mãn x + y +z = xy + yz + zx
CMR \(\frac{1}{x^2+y+1}+\frac{1}{y^2+z+1}+\frac{1}{z^2+x+1}\le1\)