Cho tam giác ABC có AB=2, AC=3, BC=4. chứng minh rằng: ^BAC=^ABC+2^ACB
Cho tam giác ABC có AB =6cm AC = 7,5cm BC=9cm Trên tia đối của tia AB lấy D sao cho AD=AC
a) Chứng minh tam giác ABC đồng dạng tam giác CBD
b) Tính CD=?
c) Chứng minh góc BAC =2 góc ACB
Cho tam giác ABC có canh AB=AC. Gọi M là trung điểm của BC.
a) Chứng minh rằng: góc ABC= góc ACB
b) Chứng minh rằng: AM là tia phân giác của góc BAC
c) Chứng minh rằng AM vuông góc với BC
cho tam giác ABC có AB=6cm , AC =7,5cm , BC =9cm . Trên tia đối của tiaAB lấy điểm D sao cho AD =AC . a, chứng minh tam giác ABC đồng dạng với tam giác CBD . b , tính CD . c, chúng minh góc BAC = 2 góc ACB
(Hình bạn tự vẽ)
a) Ta có: \(\dfrac{AB}{BC}=\dfrac{6}{9}=\dfrac{2}{3}\)
\(\dfrac{BC}{BD}=\dfrac{9}{6+7,5}=\dfrac{2}{3}\)
Xét ΔABC và ΔCBD có:
Góc B chung
\(\dfrac{AB}{BC}=\dfrac{BC}{BD}\)\(\left(=\dfrac{2}{3}\right)\)
⇒ΔABC ∼ ΔCBD (c.g.c)
b) Theo câu a ta có: ΔABC ∼ ΔCBD
⇒ \(\dfrac{AB}{AC}=\dfrac{CB}{CD}\)\(=\dfrac{6}{7,5}=\dfrac{9}{CD}\)
⇒ \(CD=\dfrac{7,5.9}{6}\)\(=\dfrac{45}{4}=11,25\)
c) Theo câu a ta có: ΔABC ∼ ΔCBD
⇒ Góc BAC = góc BCD (1)
Xét ΔBCD có: \(\dfrac{BA}{AD}=\dfrac{BC}{CD}\)
Hay \(\dfrac{6}{7,5}=\dfrac{9}{11,25}\)\(=\dfrac{4}{5}\)
⇒ CA là phân giác góc BCD
⇒ Góc ACB= góc ACD (2)
Từ (1), (2) ⇒ góc BAC = 2 góc ACB
cho tam giác ABC có góc BAC = 2 góc CBA = 4 góc ACB. Chứng minh 1/AB = 1/BC + 1/CA
Bài toán 4. Cho tam giác nhọn ABC có BAC = 60° và AB > AC, các đường cao BE,CF (E,F lần lượt thuộc CA, AB). 1. Chứng minh rằng SABC= AB.AC.căn 3/4 và BC^2 = AB^2+AC^2 – AB AC. 2. Chứng minh rằng EF = BC/2và SBCEF = 3SAEF. 3. Gọi M,N lần lượt là trung điểm của BC,EF. Tia phân giác của BAC cắt MN tại I. Chứng minh rằng IM = 2IN và MFI= 30°. Giúp mình câu 2 và câu 3 với ạ mình cảm ơn
Để chứng minh rằng SABC = AB.AC.căn 3/4 và BC^2 = AB^2 + AC^2 - AB.AC, ta có thể sử dụng các định lý trong hình học tam giác nhọn.
Để chứng minh rằng EF = BC/2 và SBCEF = 3SAEF, ta cũng có thể sử dụng các định lý trong hình học tam giác nhọn.
Để chứng minh rằng IM = 2IN và MFI = 30°, ta có thể sử dụng các định lý về tia phân giác và góc trong tam giác.
Tuy nhiên, để có thể chứng minh chính xác các phần trên, cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.
Để chứng minh rằng SABC = AB.AC.căn 3/4 và BC^2 = AB^2 + AC^2 - AB.AC, ta có thể sử dụng các định lý trong hình học tam giác nhọn.
Để chứng minh rằng EF = BC/2 và SBCEF = 3SAEF, ta cũng có thể sử dụng các định lý trong hình học tam giác nhọn.
Để chứng minh rằng IM = 2IN và MFI = 30°, ta có thể sử dụng các định lý về tia phân giác và góc trong tam giác.
Tuy nhiên, để có thể chứng minh chính xác các phần trên, cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.
1:\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sin\widehat{BAC}\)
\(=AB\cdot AC\cdot\dfrac{1}{2}\cdot\dfrac{\sqrt{3}}{2}=AB\cdot AC\cdot\dfrac{\sqrt{3}}{4}\)
Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
=>\(AB^2+AC^2-BC^2=2\cdot AB\cdot AC\cdot cos60=AB\cdot AC\)
=>\(BC^2=AB^2+AC^2-AB\cdot AC\)
2:
Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AF=AB/AC
góc EAF chung
=>ΔAEF đồng dạng với ΔABC
=>EF/BC=AE/AB=cos60=1/2 và \(\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=\dfrac{1}{4}\)
=>EF=BC/2 và \(S_{AEF}=\dfrac{1}{4}\cdot S_{ABC}\)
=>\(S_{AEF}=\dfrac{1}{4}\left(S_{AEF}+S_{BFEC}\right)\)
=>\(\dfrac{3}{4}\cdot S_{AEF}=\dfrac{1}{4}\cdot S_{BFEC}\)
=>\(S_{BFEC}=3\cdot S_{AFE}\)
Cho tam giác ABC có AB < AC, tia phân giác của góc A cắt cạnh BC tại I. Trên cạnh AC lấy điểm D sao cho AD = AB.
a) Chứng minh rằng BI = ID.
b) Tia DI cắt tia AB tại E. Chứng minh rằng ΔIBE=ΔIDCΔIBE=ΔIDC.
c) Chứng minh BD // EC.
d) Cho ∠ABC=2∠ACB.∠ABC=2∠ACB. Chứng minh rằng AB + BI = AC.
CM: a) Xét tam giác ABI và tam giác ADI
có AB = AD (gt)
góc BAI = góc IAD (gt)
AI : chung
=> tam giác ABI = tam giác ADI (c.g.c)
=> BI = ID (hai cạnh tương ứng)
b) Ta có: tam giác ABI = tam giác ADI (cmt)
=> góc ABI = góc ADI (hai góc tương ứng) (1)
Mà góc ABI + góc IBE = 1800 (2)
góc ADI + góc IDC = 1800 (3)
Từ (1), (2),(3) suy ra góc IBE = góc IDC
Xét tam giác IBE và tam giác IDC
có góc EIB = góc DIC (đối đỉnh)
IB = ID (cmt)
góc IBE = góc IDC (cmt)
=> tam giác IBE = tam giác IDC
c,d tự làm
Cho tam giác ABC, AB=6cm, AC= 7,5cm, BC=9cm. Trên tia đối của tia AB lấy D sao cho AD=AC. Chứng minh:
a) tam giác ABC ~ tam giác CBD
b) Tính CD
c) góc BAC=2.góc ACB
Cho tam giác ABC có AB=AC, M là trung điểm của AB.M là trung điểm AB,AE là tia phân giác góc BAC (E thuộc BC).Trên tia đối của tia MC lấy điểm K sao cho MC=MK
a. Chứng minh rằng: BK//AC
b. Chứng minh tam giác ACE=tam giác ABE
c. Trên tia AB lấy điểm D( B nằm giữa A và D), trên tia AC lấy điểm E( C nằm giữa A và E) sao cho BD= CE. Chứng minh rằng BE= CD.
a: Xét tứ giác AKBC có
M là trung điểm của đường chéo CK
M là trung điểm của đường chéo AB
Do đó: AKBC là hình bình hành
Suy ra: BK//AC
b: Xét ΔABE và ΔACE có
AB=AC
\(\widehat{BAE}=\widehat{CAEE}\)
AE chung
Do đó: ΔABE=ΔACE
Cho tam giác ABC có AB=AC, M là trung điểm của AB.M là trung điểm AB,AE là tia phân giác góc BAC (E thuộc BC).Trên tia đối của tia MC lấy điểm K sao cho MC=MK
a. Chứng minh rằng: BK//AC
b. Chứng minh tam giác ACE=tam giác ABE
c. đường thẳng KB cắt AE ở I.CM tam giác IAK vuông
a: Xét tứ giác AKBC có
M là trung điểm của đường chéo CK
M là trung điểm của đường chéo AB
Do đó: AKBC là hình bình hành
Suy ra: BK//AC
b: Xét ΔABE và ΔACE có
AB=AC
\(\widehat{BAE}=\widehat{CAEE}\)
AE chung
Do đó: ΔABE=ΔACE