Pha tich da thuc thanh nhan tu
\(a,6x^4-11x^2+3\)
\(b,\left(x^2+3x+1\right)\left(x^2+3x-3\right)-5\)
phan tich da thuc thanh nhan tu :
a,(x-5)^2+(x-5)(x+5)-(5-x)(2x+1)
b,\(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
Câu a :
\(\left(x-5\right)^2+\left(x-5\right)\left(x+5\right)-\left(5-x\right)\left(2x+1\right)\)
\(=x^2-10x+25+x^2-25-10x-5+2x^2+x\)
\(=4x^2-19x-5\)
Câu b :
\(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
\(=12x^2-9x-8x+6-2x+2+3x^2-3x-6x^2-6x+4x+4\)
\(=9x^2-24x+2\)
phan tich da thuc thanh nhan tu : a) 3x^2 - 22xy + 4x + 8y + 7x^2 + 1 ; b) 12x^2 + 5x - 12y^2 + 12y - 10xy - 3 ; c)x^4 + 6x^3 + 11x^2 + 6x + 1
Phan tich da thuc thanh nhan tu
3x^2-11x+6
x^2-6x+5
x^4+x^2+1
x^4-4x^2+3
6x^2+7xy+2y^2
(*)\(3x^2-11x+6=3x^2-2x-9x+6=x\left(3x-2\right)-3\left(3x-2\right)=\left(x-3\right)\left(3x-2\right)\)
(*)\(x^2-6x+5=x^2-x-5x+5=x\left(x-1\right)-5\left(x-1\right)=\left(x-5\right)\left(x-1\right)\)
(*)\(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2=\left(x^2+1+x\right)\left(x^2+1-x\right)\)
(*)\(x^4-4x^2+3=x^4-x^2-3x^2+3=x^2\left(x^2-1\right)-3\left(x^2-1\right)=\left(x+1\right)\left(x-1\right)\left(x^2-3\right)\)
(*)\(6x^2+7xy+2y^2=6x^2+4xy+3xy+2y^2=2x\left(3x+2y\right)+y\left(3x+2y\right)=\left(2x+y\right)\left(3x+2y\right)\)
a, \(3x^2-11x+6=3x^2-2x-9x+6=x\left(3x-2\right)-3\left(3x-2\right)=\left(3x-2\right)\left(x-3\right)\)
b, \(x^2-6x+5=x^2-x-5x+5=x\left(x-1\right)-5\left(x-1\right)=\left(x-1\right)\left(x-5\right)\)
c, \(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
d, \(x^4-4x^2+3=x^4-4x^2+4-1=\left(x^2-2\right)^2-1=\left(x^2-1\right)\left(x^2-3\right)=\left(x+1\right)\left(x-1\right)\left(x^2-3\right)\)
e, \(6x^2+7xy+2y^2=6x^2+3xy+4xy+2y^2=3x\left(2x+y\right)+2y\left(2x+y\right)=\left(2x+y\right)\left(3x+2y\right)\)
phan tich da thuc thanh nhan tu
\(9\left(x+1\right)^2-\left(3x-2\right)^2\)
\(9\left(x+1\right)^2-\left(3x-2\right)^2\)
\(=9\left(x^2+2x+1\right)-\left(9x^2-12x+4\right)\)
\(=9x^2+18x+9-9x^2+12x-4\)
\(=30x+5\)
\(=5\left(6x+1\right)\)
\(9\left(x+1\right)^2-\left(3x-2\right)^2\)
\(=\left[3\left(x+1\right)+3x-2\right]\left[3\left(x+1\right)-3x+2\right]\)
\(=\left(3x+3+3x-2\right)\left(3x+3-3x+2\right)\)
\(=5\left(6x+1\right)\)
\(9\left(x+1\right)^2-\left(3x-2\right)^2\)
=\(\left(9x^2+18x+9\right)-\left(9x^2-12x+4\right)\)
=\(9x^2+18x+9-9x^2+12x-4\)
=\(5\left(6x+1\right)\)
MHƯ VẬY ĐÚNG KHÔNG
phan tich da thuc thanh nhan tu
ab(a-b)+bc(b-c) +ca(c-a)
\(x^4-3x^3y+3x^2y^2-z^3-xy^3\)
\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)
Phan tich da thuc thanh nhan tu
a,(x2+3x+1)(x2+3x-3)-5
b,(3x-2)2 (6x-5)(6x-3)-5
c,x4+6x3+11x2+6x+1
d,x4+5x2+9
f,a3(c-b2)+b3(a-c2)+c3(b-a2)+abc(abc-1)
Đặt \(x^2+3x+1=t\)
\(\left(x^2+3x+1\right)\left(x^2+3x-3\right)-5\)
\(=t\left(t-4\right)-5\)
\(=t^2-4t-5\)
tự làm nốt ý này nhé.
những ý kia lát nx mình làm.
d) \(x^4+5x^2+9\).Đặt \(x^2=t\) thì:
\(x^4+5x^2+9=t^2+5t+9\)
Làm nốt ý này nhé bạn! Ý kia chút nữa rảnh làm!
b) \(\left(3x-2\right)^2\left(6x-5\right)\left(6x-3\right)-5\)
\(=\left(3x-2\right)^2\left(6x-5\right)\left(6x-3\right)-\left(\sqrt{5}\right)^2\)
\(=\left(3x-2+\sqrt{5}\right)\left(3x-2-\sqrt{5}\right)\left(6x-5\right)\left(6x-3\right)\)
phan tich da thuc thanh nhan tu ;
\(3x^2-3y^2-2\left(x-y\right)^2\)
\(3x^2-3y^2-2\left(x-y\right)^2\)
\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)
\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)
\(=\left(x-y\right)\left[3\left(x+y\right)-2\left(x-y\right)\right]\)
\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)
\(=\left(x-y\right)\left(x+5y\right)\)
\(\left(3x+1\right)^2-4.\left(x-2\right)^2\)=
Giai dung nha, ai giai dung mk tick cho
Cung la bai phan tich da thuc thanh nhan tu dung hang dang thuc(cua lop 8)
\(\Leftrightarrow\left(3x-1\right)^2-4^2=0\)
\(\Leftrightarrow\left(3x-1-4\right)\left(3x-1+4\right)=0\)
\(\Leftrightarrow\left(3x-5\right)\left(3x+3\right)=0\Leftrightarrow\orbr{\begin{cases}3x-5=0\\3x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}}\)
phan tich da thuc thanh nhan tu :
\(3x^2-3y^2-2\left(x-y\right)^2\)
\(3x^2-3y^2-2\left(x-y\right)^2\)
\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)
\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)
\(=\left(x-y\right)\left[3\left(x+y\right)-2\left(x-y\right)\right]\)
\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)
\(=\left(x-y\right)\left(x+5y\right)\)
Chúc bạn học tốt!!!