Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyenquocngoc
Xem chi tiết
Nguyễn Ngọc Huyền Như
Xem chi tiết
titanic
Xem chi tiết
Thắng Nguyễn
3 tháng 12 2016 lúc 12:02

Đặt \(\frac{a}{b}=\frac{c}{d}=k\), suy ra \(a=bk;c=dk\)

\(VT=\frac{2b^2k^2-3b^2k+3b^2}{2b^2+3b^2k}=\frac{b^2\left(2k^2-3k+3\right)}{b^2\left(2+3k\right)}=\frac{2k^2-3k+3}{3k+2}\left(1\right)\)

\(VP=\frac{2d^2k^2-3d^2k+3d^2}{2d^2+3d^2k}=\frac{d^2\left(2k^2-3k+3\right)}{d^2\left(2+3k\right)}=\frac{2k^2-3k+3}{3k+2}\left(2\right)\)

Từ (1) và (2) suy ra ĐPcm

Nguyễn Phương Ngân
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 10 2021 lúc 19:45

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\\ \dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\dfrac{b^2}{d^2}\\ \Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

Vũ Bảo Vinh
Xem chi tiết
Nghia Pham
Xem chi tiết
Nguyễn Huy Tú
13 tháng 12 2016 lúc 17:59

a) Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

Ta có:
\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\) (1)

\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2.k^2-b^2}{d^2.k^2-d^2}=\frac{b^2.\left(k^2-1\right)}{d^2.\left(k^2-1\right)}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) suy ra \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)

b) Giải:
Để \(P\in Z\Rightarrow2x-3⋮x+1\)

Ta có:
\(2x-3⋮x+1\)

\(\Rightarrow\left(2x+2\right)-5⋮x+1\)

\(\Rightarrow5⋮x+1\)

\(\Rightarrow x+1\in\left\{1;-1;5;-5\right\}\)

+) \(x+1=1\Rightarrow x=0\)

+) \(x+1=-1\Rightarrow x=-2\)

+) \(x+1=5\Rightarrow x=4\)

+) \(x+1=-5\Rightarrow x=-6\)

Vậy \(x\in\left\{0;-2;4;-6\right\}\)

 

 

\(\Rightarrow5⋮x+1\)

Phạm Nguyễn Tất Đạt
13 tháng 12 2016 lúc 18:04

1)Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)(tính chất dãy tỉ số bằng nhau)

\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)

2)\(P=\frac{2x-3}{x+1}=\frac{2x+2-5}{x+1}=\frac{2\left(x+1\right)-5}{x+1}=2-\frac{5}{x+1}\)

\(\Rightarrow P\in Z\Leftrightarrow2-\frac{5}{x+1}\in Z\Leftrightarrow\frac{5}{x+1}\in Z\Leftrightarrow5⋮x+1\Leftrightarrow x+1\inƯ\left(5\right)\)

\(\Rightarrow x+1\in\left\{-1;-5;1;5\right\}\)

\(\Rightarrow x\in\left\{-2;-6;0;4\right\}\)

phạm hồng hạnh
Xem chi tiết
trần thu phương
24 tháng 6 2016 lúc 22:04

a)  de sai 

b) do a/b =c/d  =>a/c =b/d =k (1) => k^2 = a.c /bd

tu (1) =>k^2 =a^2/ c^2 =b^2/ d^2 =a^2+b^2 /c^2+d^2 

=>a^2 +b^2 /c^2 +d^2 = a.c /bd

ho dang khai
Xem chi tiết
Trần quang minh
Xem chi tiết