\(B=\sqrt{4-\sqrt{15}}-\sqrt{4+\sqrt{15}}\)
Tính B
Thực hiện phép tính ( rút gọn biểu thức )
a) \(\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)
b) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\)\(\sqrt{4-\sqrt{15}}\)
a) \(\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)
\(=\sqrt{14}\cdot\sqrt{5-\sqrt{21}}+\sqrt{6}\cdot\sqrt{5-\sqrt{21}}\)
\(=\sqrt{14\cdot\left(5-\sqrt{21}\right)}+\sqrt{6\cdot\left(5-\sqrt{21}\right)}\)
\(=\sqrt{70-14\sqrt{21}}+\sqrt{30-6\sqrt{21}}\)
\(=\sqrt{7^2-2\cdot7\cdot\sqrt{21}+\left(\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}\right)^2-2\cdot3\cdot\sqrt{21}+3^2}\)
\(=\sqrt{\left(7-\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}-3\right)^2}\)
\(=\left|7-\sqrt{21}\right|+\left|\sqrt{21}-3\right|\)
\(=7-\sqrt{21}+\sqrt{21}-3\)
\(=4\)
b) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\left[4\cdot\left(\sqrt{10}-\sqrt{6}\right)+\sqrt{15}\cdot\left(\sqrt{10}-\sqrt{6}\right)\right]\cdot\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(\sqrt{10}+\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)
\(=\sqrt{10\cdot\left(4-\sqrt{15}\right)}+\sqrt{6\cdot\left(4-\sqrt{15}\right)}\)
\(=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)
\(=\sqrt{5^2-2\cdot5\cdot\sqrt{15}+\left(\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}\right)^2-2\cdot3\cdot\sqrt{15}+3^2}\)
\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}\)
\(=\left|5-\sqrt{15}\right|+\left|\sqrt{15}-3\right|\)
\(=5-\sqrt{15}+\sqrt{15}-3\)
\(=2\)
Tính:
a)\(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
b)\(\left(\sqrt{10}+\sqrt{6}\right)\left(\sqrt{15}-4\right)\sqrt{4+\sqrt{15}}\)
Giúp mình với nha
a) \(=\sqrt{4+\sqrt{8}}.\sqrt{2-\sqrt{2}}=\sqrt{2\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}=\sqrt{2.2}=\sqrt{4}=2\)
b) \(=\sqrt{2}\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{15}-4\right)\sqrt{4+\sqrt{15}}=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{15}-4\right)\sqrt{8+2\sqrt{15}}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{15}-4\right)\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{15}-4\right)\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\left(\sqrt{5}+\sqrt{3}\right)^2\left(\sqrt{15}-4\right)=2\left(4+\sqrt{15}\right)\left(\sqrt{15}-4\right)\)
\(=-2\)
Thực hiện phép tính:
a)\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
b)\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)
ưu tiên phương pháp bình phương :
a) \(\left(4+\sqrt{15}\right)^2\left(\sqrt{10}-\sqrt{6}\right)^2\left(\sqrt{4-\sqrt{15}}\right)^2\)
\(=\left(4+\sqrt{15}\right)^2\left(4-\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)^2\)
Tính ra kết quả nhớ căn đó
b) Phương pháp trục căn thức :
\(\frac{\sqrt{3+\sqrt{5}}\sqrt{3-\sqrt{5}}}{\sqrt{3-\sqrt{5}}}-\frac{\sqrt{3-\sqrt{5}}\sqrt{3+\sqrt{5}}}{\sqrt{3+\sqrt{5}}}-\sqrt{2}\)
Trên tử có hàng đẳng thức . bạn tự quy động là ra
a)\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
= \(\sqrt{4+\sqrt{15}}.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4+\sqrt{15}}.\sqrt{4-\sqrt{15}}\)
= \(\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4^2-\left(\sqrt{15}\right)^2}\)
=\(\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{16-15}\)
=\(\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{1}\)
=\(\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
= \(\left(\sqrt{5}\right)^2-\left(\sqrt{3}\right)^2\)
= \(5-3=2\)
tính:
\(\dfrac{\sqrt{6-2\sqrt[]{5}}}{\sqrt[]{5}-1}\)
b)\(\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)
Tính
a)\(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}\)
b)\(\sqrt{75}+\sqrt{48}-\sqrt{300}\)
c)\(\sqrt{3-2\sqrt{2}}+\frac{1}{\sqrt{2}-1}\)
a) = \(\frac{\sqrt{2}.\sqrt{4+\sqrt{15}}}{\sqrt{2}}+\frac{\sqrt{2}.\sqrt{4-\sqrt{15}}}{\sqrt{2}}\)
= \(\frac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}+\frac{\sqrt{8-2\sqrt{15}}}{\sqrt{2}}\)
= \(\frac{\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}}{\sqrt{2}}+\frac{\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{2}}\)
= \(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\)
= \(\frac{2\sqrt{5}}{\sqrt{2}}\)
= \(\sqrt{10}\)
b) = \(5\sqrt{3}+4\sqrt{3}-10\sqrt{3}\)
= \(-\sqrt{3}\)
c) = \(\sqrt{\left(\sqrt{2}-\sqrt{1}\right)^2}+\frac{1\left(\sqrt{2}+1\right)}{2-1}\)
= \(\sqrt{2}-\sqrt{1}+\frac{1\left(\sqrt{2}+1\right)}{1}\)
= \(\sqrt{2}-\sqrt{1}+\sqrt{2}+\sqrt{1}\)
= \(2\sqrt{2}\)
Chúc bạn học tốt ^^
Tính:
a) \(A=\left(\sqrt{6}+\sqrt{10}\right)-\sqrt{4-\sqrt{15}}\)
b) \(B=\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3-\sqrt{15}}\)
c) \(C=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)
Tính
a) Ta có: \(A=\left(\sqrt{6}+\sqrt{10}\right)-\sqrt{4-\sqrt{15}}\)
\(=\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)-\sqrt{4-\sqrt{15}}\)
\(=\sqrt{3}+\sqrt{5}-\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{3}+\sqrt{5}-\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\)
\(=\sqrt{3}+\sqrt{5}-\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\sqrt{3}+\sqrt{5}-\left|\sqrt{5}-\sqrt{3}\right|\)
\(=\sqrt{3}+\sqrt{5}-\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{3}+\sqrt{5}-\sqrt{5}+\sqrt{3}\)
\(=2\sqrt{3}\)
c) Ta có: \(C=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{2}\cdot\sqrt{4-\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\)
\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\left|\sqrt{5}-\sqrt{3}\right|\)
\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)^2\)
\(=\left(4+\sqrt{15}\right)\cdot\left(8-2\sqrt{15}\right)\)
\(=2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)\)
\(=2\left[4^2-\left(\sqrt{15}\right)^2\right]\)
\(=2\cdot\left[16-15\right]=2\cdot1=2\)
Tính:
a.\(\sqrt{4+\sqrt{7}}\) - \(\sqrt{4-\sqrt{7}}\)
b.\(\sqrt{4-\sqrt{15}}\) - \(\sqrt{4+\sqrt{15}}\)
c.\(\sqrt{2+\sqrt{3}}\) + \(\sqrt{2-\sqrt{3}}\)
d.\(\sqrt{9+\sqrt{17}}\) - \(\sqrt{9-\sqrt{17}}\)
Mong mn giúp em bài này ạ .Em đang cần gấp !!
`a)sqrt{4+sqrt7}-sqrt{4-sqrt7}`
`=sqrt{(8+2sqrt7)/2}-sqrt{(8-2sqrt7)/2}`
`=sqrt{(7+2sqrt7+1)/2}-sqrt{(7-2sqrt7+1)/2}`
`=sqrt{(sqrt7+1)^2/2}-sqrt{(sqrt7-1)^2/2}`
`=(sqrt7+1)/sqrt2-(sqrt7-1)/sqrt2`
`=2/sqrt2=sqrt2`
`b)sqrt{4--sqrt15}-sqrt{4+sqrt15}`
`=sqrt{(8-2sqrt15)/2}-sqrt{(8+2sqrt15)/2}`
`=sqrt{(5-2sqrt{5.3}+3)/2}-sqrt{(5+2sqrt{5.3}+3)/2}`
`=sqrt{(sqrt5-sqrt3)^2/2}-sqrt{(sqrt5+sqrt3)^2/2}`
`=(sqrt5-sqrt3)/sqrt2-(sqrt5+sqrt3)/sqrt2`
`=(-2sqrt3)/sqrt2=-sqrt6`
`c)sqrt{2+sqrt3}+sqrt{2-sqrt3}`
`=sqrt{(4+2sqrt3)/2}+sqrt{(4-2sqrt3)/2}`
`=sqrt{(3+2sqrt3+1)/2}+sqrt{(3-2sqrt3+1)/2}`
`=sqrt{(sqrt3+1)^2/2}+sqrt{(sqrt3-1)^2/2}`
`=(sqrt3+1)/sqrt2+(sqrt3-1)/sqrt2`
`=(2sqrt3)/sqrt2=sqrt6`
`d)sqrt{9+sqrt17}-sqrt{9-sqrt17}`
`=sqrt{(18+2sqrt17)/2}-sqrt{(18-2sqrt17)/2}`
`=sqrt{(17+2sqrt17+1)/2}-sqrt{(17-2sqrt17+1)/2}`
`=sqrt{(sqrt17+1)^2/2}-sqrt{(sqrt17-1)^2/2}`
`=(sqrt17+1)/sqrt2-(sqrt17-1)/sqrt2`
`=2/sqrt2=sqrt2`
a: Ta có: \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
\(=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}+1-\sqrt{7}+1}{\sqrt{2}}=\sqrt{2}\)
b: Ta có: \(\sqrt{4-\sqrt{15}}-\sqrt{4+\sqrt{15}}\)
\(=\dfrac{\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)
Tính
A=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
B=\(\left(3-\sqrt{5}\right)\cdot\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\cdot\sqrt{3-\sqrt{5}}\)
C=\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{ }}3}}\)
D=\(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
E=\(\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{5}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}\)
a: \(A=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
b: \(\sqrt{2}\cdot B=\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\)
\(\Leftrightarrow B\sqrt{2}=3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}\)
\(\Leftrightarrow B\sqrt{2}=4\sqrt{5}\)
hay \(B=2\sqrt{10}\)
d: \(D\sqrt{2}=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\cdot\left(\sqrt{5}-1\right)\)
\(=2\sqrt{5}-2\sqrt{5}+2=2\)
hay \(D=\sqrt{2}\)
Rút gọn các biểu thức :
a) \(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)
b) \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
c)\(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
a: \(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)
\(=4-\sqrt{15}+\sqrt{15}=4\)
b: \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(=2+\sqrt{3}-2+\sqrt{3}\)
\(=2\sqrt{3}\)
c: \(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
\(=\sqrt{\left(2\sqrt{5}+3\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}\)
\(=2\sqrt{5}+3-2\sqrt{5}+3=6\)