Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
123 nhan
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 8 2023 lúc 5:06

a: 


Sửa đề: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+3}{9-x}\right)\cdot\left(\dfrac{\sqrt{x}-7}{\sqrt{x}+1}+1\right)\)

\(P=\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right)\cdot\dfrac{\sqrt{x}-7+\sqrt{x}+1}{\sqrt{x}+1}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\cdot\dfrac{2\sqrt{x}-6}{\sqrt{x}+1}\)

\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{2}{\sqrt{x}+1}=\dfrac{-6}{\sqrt{x}+3}\)

b: P>=1/2

=>P-1/2>=0

=>\(\dfrac{-6}{\sqrt{x}+3}-\dfrac{1}{2}>=0\)

=>\(\dfrac{-12-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>=0\)

=>\(-\sqrt{x}-15>=0\)

=>\(-\sqrt{x}>=15\)

=>căn x<=-15

=>\(x\in\varnothing\)

c: căn x+3>=3

=>6/căn x+3<=6/3=2

=>P>=-2

Dấu = xảy ra khi x=0

Vương Đình Minh
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 10 2021 lúc 21:28

\(a,A=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\\ b,x=36\Leftrightarrow A=\dfrac{6}{6-2}=\dfrac{6}{4}=\dfrac{3}{2}\\ c,A=-\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=-\dfrac{1}{3}\Leftrightarrow3\sqrt{x}=2-\sqrt{x}\\ \Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\\ d,A\in Z\Leftrightarrow1+\dfrac{2}{\sqrt{x}-2}\in Z\\ \Leftrightarrow\sqrt{x}-2\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{0;1;3;4\right\}\\ \Leftrightarrow x\in\left\{0;1;9;16\right\}\)

\(e,A:B=\dfrac{\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}+1}=-2\\ \Leftrightarrow\sqrt{x}=-2\sqrt{x}-2\\ \Leftrightarrow\sqrt{x}=-\dfrac{2}{3}\left(ktm\right)\\ \Leftrightarrow x\in\varnothing\)

Nguyễn Lê Phước Thịnh
11 tháng 10 2021 lúc 21:28

a: Ta có: \(A=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)

\(=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{x-4}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

nguyen ngoc son
Xem chi tiết
mai ngoc linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 22:51

a: \(P=\dfrac{15\sqrt{x}-11+\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11+3x+7\sqrt{x}-6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+21\sqrt{x}-14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

b: Khi x=9 thì \(P=\dfrac{9+21\cdot3-14}{\left(3+3\right)\left(3-1\right)}=\dfrac{29}{6}\)

123 nhan
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2023 lúc 20:54

a: \(P=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\cdot\dfrac{\sqrt{x}-7+\sqrt{x}+1}{\sqrt{x}+1}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\cdot\dfrac{2\sqrt{x}-6}{\sqrt{x}+1}\)

\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+1}\cdot\dfrac{2}{\sqrt{x}+3}=-\dfrac{6}{\sqrt{x}+3}\)

b: P>=-1/2

=>P+1/2>=0

=>\(\dfrac{-6}{\sqrt{x}+3}+\dfrac{1}{2}>=0\)

=>\(\dfrac{-12+\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}>=0\)

=>căn x-9>=0

=>x>=81

c: căn x+3>=3

=>6/căn x+3<=6/3=2

=>-6/căn x+3>=-2

Dấu = xảy ra khi x=0

Tam Akm
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 6 2023 lúc 19:33

1: \(P=\dfrac{x+1-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}:\dfrac{x+\sqrt{x}+\sqrt{x}+1}{\left(x+1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{x+1}\cdot\dfrac{\left(x+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}=\dfrac{\sqrt{x}-1}{x+1}\)

2: P<1/2
=>P-1/2<0

=>\(2\sqrt{x}-2-x-1< 0\)

=>-x+2căn x-1<0

=>(căn x-1)^2>0(luôn đúng)

Nguyễn Minh Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 6 2023 lúc 8:20

\(P=\dfrac{A}{B}=\sqrt{x}+1\)

P<7/4

=>căn x<3/4

=>0<x<9/16

Diệp Nguyễn Thị Huyền
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 8 2021 lúc 0:47

Rút gọn biểu thức P ta được \(P=\dfrac{2\left(x+\sqrt{x}+1\right)}{\sqrt{x}}\)

\(\Rightarrow\dfrac{7}{P}=\dfrac{7\sqrt{x}}{2\left(x+\sqrt{x}+1\right)}\)

Ta có \(\left\{{}\begin{matrix}\sqrt{x}>0\\x+\sqrt{x}+1>0\end{matrix}\right.\) \(\Rightarrow\dfrac{7}{P}>0\)

Lại có: \(\dfrac{7\sqrt{x}}{2\left(x+\sqrt{x}+1\right)}=\dfrac{4\left(x+\sqrt{x}+1\right)-4x+3\sqrt{x}-4}{2\left(x+\sqrt{x}+1\right)}=2-\dfrac{4x+3\sqrt{x}+4}{2\left(x+\sqrt{x}+1\right)}< 2\)

\(\Rightarrow0< \dfrac{7}{P}< 2\)

Mà \(\dfrac{7}{P}\) nguyên \(\Rightarrow\dfrac{7}{P}=1\)

\(\Rightarrow\dfrac{7\sqrt{x}}{2\left(x+\sqrt{x}+1\right)}=1\Rightarrow2x+2\sqrt{x}+2=7\sqrt{x}\)

\(\Rightarrow2x-5\sqrt{x}+2=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{4}\end{matrix}\right.\)

Nguyễn Minh Ngọc
Xem chi tiết
Nguyễn Huy Tú
8 tháng 5 2022 lúc 9:27

đk x > 0 

\(\dfrac{A}{B}=\dfrac{\dfrac{x+2\sqrt{x}}{x}}{\dfrac{\sqrt{x}+2}{\sqrt{x}+1}}=\dfrac{\dfrac{\sqrt{x}+2}{\sqrt{x}}}{\dfrac{\sqrt{x}+2}{\sqrt{x}+1}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{7}{4}< 0\)

\(\Leftrightarrow\dfrac{4\sqrt{x}+4-7\sqrt{x}}{4\sqrt{x}}< 0\Leftrightarrow\dfrac{-3\sqrt{x}+4}{4\sqrt{x}}< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3\sqrt{x}+4\ne0\\-3\sqrt{x}+4< 0\\4\sqrt{x}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{16}{9}\\x< \dfrac{16}{9}\\x\ne0\end{matrix}\right.\)