Cho x, y, z là các số thực thỏa mãn:
2x = 3y = 5z và |x - 2y| = 5.
Tìm giá trị lớn nhất của 3x – 2z.
Cho x, y, z là các số thực thỏa mãn: 2x= 3y= 5z và |x-2y|= 5
Tìm giá trị lớn nhất của 3x - 2z
Câu hỏi của Phú Hồ Kim - Toán lớp 7 - Học toán với OnlineMath
tham khảo nhé
\(1\), Cho x,y,z là các số thực thỏa mãn \(2x=3y=5z\)và\(|x-2y|=5\). Tìm giá trị nhỏ nhất của \(3x-2z\)
\(2\), Tìm giá trị lớn nhất của biểu thức : \(B=\frac{x^2+15}{x^2+3}\)
1) \(2x=3y=5z\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-2y}{15-2\cdot10}=\frac{x-2y}{-5}\)
*TH1: Nếu x-2y = 5
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{5}{-5}=-1\)
\(\Rightarrow\hept{\begin{cases}x=-15\\y=-10\\z=-6\end{cases}}\)\(\Rightarrow3x-2z=3\left(-15\right)-2\cdot6=-45-12=-57\)
*TH2: Nếu x-2y = -5
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=1\)\(\Rightarrow\hept{\begin{cases}x=15\\y=10\\z=6\end{cases}\Rightarrow3x-2z=3\cdot15-2\cdot6=45-12=33}\)
Vậy giá trị nhỏ nhất của 3x - 2z là -57.
2)\(B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\le1+\frac{12}{3}=5\)
Dấu "=" xảy ra khi x = 0.
cho x,y,z là các số thực thõa mãn: 2x=3y=5z và \(|x-2y|=5\)
Tìm GTLN của 3x-2z
| x - 2y | = 5
\(\Rightarrow\)\(\orbr{\begin{cases}x-2y=5\\x-2y=-5\end{cases}}\)
Theo bài ra : 2x = 3y = 5z
\(\Rightarrow\)\(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)
\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{3x}{45}=\frac{2y}{20}=\frac{2z}{12}=\frac{3x-2z}{45-12}=\frac{x-2y}{15-20}\)
+) với x- 2y = 5 thì \(\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)\(\Rightarrow\frac{3x-2z}{45-12}=\frac{3x-2z}{33}=-1\)\(\Rightarrow3x-2z=-33\)
+) với x - 2y = -5 thì \(\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)\(\Rightarrow\frac{3x-2z}{45-12}=\frac{3x-2z}{33}=1\)\(\Rightarrow3x-2z=33\)
Vậy GTLN của 3x - 2z là 33
\(2x=3y\Leftrightarrow x=\frac{3y}{2}\)
Vậy ...
\(\left|\frac{3y}{2}-2y\right|=5\)" thay \(x=\frac{3y}{2}\)vào "
\(\left|\frac{3y-4y}{2}\right|=5\)" quy đồng"
\(\left|\frac{-y}{2}\right|=5\)" rút gọn
Giá trị tuyệt đối với -y ta được:
\(\frac{y}{2}=5\Leftrightarrow y=10\)
Tương tự ta có :
\(x=\frac{5z}{2};2y=\frac{10z}{3}\)
\(\left|\frac{5z}{2}-\frac{10z}{3}\right|=5\Leftrightarrow\left|\frac{15z-20z}{6}\right|=5\Leftrightarrow\left|\frac{-5z}{6}\right|=5\)
Gía trị tuyệt đối với -5z âm ta được :
\(5z=30\Leftrightarrow z=6\)
Tương tự với x suy ra x = 15 "làm tắt "
Từ 1,2,3
Suy ra x = 15 ; y = 10 ; z = 6
Thay số ta được :
\(3.15-2.6=45-12=33\)
Cho x, y, z là các số thực thỏa mãn: 2x = 3y = 5z và |x - 2y| = 5
Tìm giá trị lớn nhất của 3x - 2z
Ta có: \(2x=3y\Leftrightarrow2x-3y=0\)
\(\left|x-2y\right|=5\Leftrightarrow\left[{}\begin{matrix}x-2y=5\\-x+2y=5\end{matrix}\right.\)
Ta có hệ pt: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-3y=0\\x-2y=5\end{matrix}\right.\\\left\{{}\begin{matrix}2x-3y=0\\-x+2y=5\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-15\\y=-10\end{matrix}\right.\\\left\{{}\begin{matrix}x=15\\y=10\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}z=\frac{2.\left(-15\right)}{5}=-6\\z=\frac{2.15}{5}=6\end{matrix}\right.\)
Với x=-15 ; z=-6 thì \(3x-2z=3.\left(-15\right)-2.\left(-6\right)=-33\)
Với x=15 ; z=6 thì \(3x-2z=3.15-2.6=33\)
Vậy giá trị lớn nhất của 3x-2z=33 khi x=15, z=6 và y=10
Cho x,y,z là các số thực thỏa mãn : 2x = 3y = 5z và / x - 2y / = 5.
Tìm giá trị lớn nhất của 3x - 2z
\(\text{Các số thực không âm x,y,z thay đổi thỏa mãn điều kiện: x^2+ y^2+x^2+x^2y^2+y^2z^2+z^2x^2=6. \text{Tìm giá trị lớn nhất và nhỏ nhất của biểu thức Q=x+y+z}}\)\(\text{Các số thực không âm x,y,z thay đổi thỏa mãn điều kiện x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức Q=x+y+z}\)
https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/
bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo
Sử dụng bất đẳng thức AM-GN, ta có:
\(x^2y^2+1\ge2xy,\) \(y^2z^2+1\ge2yz,\) \(z^2x^2+1\ge2zx\)
Cộng các bất đẳng thức trên lại theo vế, sau đó cộng hai vế của bất đẳng thức thu được với \(x^2+y^2+z^2\), ta được:
\(\left(x+y+z\right)^2\le x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2+3=9\)
Từ đó suy ra: \(Q\le3\)
Mặt khác, dễ thấy dấu bất đẳng thức xảy ra khi \(x=y=z=1\) nên ta có kết luận \(Max_Q=3\)
Ta sẽ chứng minh \(Q\ge\sqrt{6}\) với dấu đẳng thức xảy ra, chẳng hạn \(x=\sqrt{6},\) \(y=z=0.\) Sử dụng bất đẳng thức AM-GN, ta có:
\(2xy+x^2y^2\le x^2+y^2+x^2y^2\le x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6\)
Từ đó suy ra: \(xy\le\sqrt{7}-1< 2\)
Chứng minh tương tự, ta cũng có:
\(yz< 2,\) \(zx< 2.\)
Do đó, ta có:
\(Q^2=x^2+y^2+z^2+2xy+2yz+2zx\ge x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6\)
Hay: \(Q\ge\sqrt{6}\)
\(\Rightarrow Min_Q=\sqrt{6}\)
cho x và y là số thực thảo mãn : 2x=3y=5z va |x-2y|=5
tìm GTLN của 3x-2z
\(2x=3y\Leftrightarrow x=\frac{3y}{2}\)
vậy ....
\(\text{|}\frac{3y}{2}-2y\text{|}=5\) " thay x=3y/2 vào "
\(\text{|}\frac{3y-4y}{2}\text{|}=5\) " quy đồng"
\(\text{|}\frac{-y}{2}\text{|}=5\)" rút gọn "
phá trị tuyệt đối với -y ta được
\(\frac{y}{2}=5\Leftrightarrow y=10\)
tượng tự ta có
\(x=\frac{5z}{2};2y=\frac{10z}{3}\)
\(\text{|}\frac{5z}{2}-\frac{10z}{3}\text{|}=5\Leftrightarrow\text{|}\frac{15z-20z}{6}\text{|}=5\Leftrightarrow\text{|}\frac{-5z}{6}|=5\)
phá trị tuyệt đối với -5z âm ta được
\(5z=30\Leftrightarrow z=6\)
tương tự với x suy ra x=15 " làm tắt"
từ 1,2,3
suy ra x=15 , y =10 , z=6
thay số ta được
\(3.15-2.6=45-12=33\)
cho x,y,z là các số thực dương thỏa mãn \(x^2+y^2+z^2\ge\dfrac{1}{3}\)
chứng minh \(\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\ge\dfrac{1}{30}\)
đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)
\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)
BBDT AM-GM
\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)
theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)
vì \(x^2+y^2\ge2xy\)
\(y^2+z^2\ge2yz\)
\(x^2+z^2\ge2xz\)
\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)
\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)
\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)
dấu"=" xảy ra<=>x=y=z=1/3
Cho x,y,z là các số thực không âm thỏa mãn x + y + z = 1. Tìm giá trị lớn nhất của biểu thức.
\(P=\sqrt{2x^2+x+1}+\sqrt{2y^2+y+1}+\sqrt{2z^2+z+1}\)
Em không chắc đâu nha!
Từ đề bài suy ra \(0\le x;y;z\le1\Rightarrow x\left(1-x\right)\ge0\Rightarrow x\ge x^2\)
Tương tự với y với z.Ta có:
\(P=\sqrt{x^2+x^2+x+1}+\sqrt{y^2+y^2+y+1}+\sqrt{z^2+z^2+z+1}\)
\(\le\sqrt{x^2+2x+1}+\sqrt{y^2+2y+1}+\sqrt{z^2+2z+1}\)
\(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(y+1\right)^2}+\sqrt{\left(z+1\right)^2}\)
\(=\left|x+1\right|+\left|y+1\right|+\left|z+1\right|\)
\(=\left(x+y+z\right)+3=1+3=4\)
Dấu "=" xảy ra khi (x;y;z) = (0;0;1) và các hoán vị của nó.
Vậy....
Em sai chỗ nào xin các anh/ chị chỉ rõ ra giúp ạ, chứ tk sai mà không góp ý thế em cũng không biết đường nào mà tránh cái lỗi sai tương tự đâu ạ! Em cảm ơn.