Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Gia Anh Vũ
Xem chi tiết
Hoàng Lê Bảo Ngọc
20 tháng 10 2016 lúc 11:39

Thắng Nguyễn Phần cuối cùng viết rõ ra một chút :

\(2\sqrt{2}\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)\ge\frac{y^2+z^2-x^2}{x}+\frac{y^2+x^2-z^2}{z}+\frac{x^2+z^2-y^2}{y}\)

\(\frac{y^2}{x}+\frac{z^2}{x}+\frac{y^2}{z}+\frac{x^2}{z}+\frac{x^2}{y}+\frac{z^2}{y}-\sqrt{2015}\ge\frac{\left[2\left(x+y+z\right)\right]^2}{2\left(x+y+z\right)}-\sqrt{2015}=\sqrt{2015}\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\sqrt{2015}}{2\sqrt{2}}=\frac{1}{2}\sqrt{\frac{2015}{2}}\)

Thắng Nguyễn
20 tháng 10 2016 lúc 11:15

Đặt \(\sqrt{a^2+b^2=z};\sqrt{a^2+c^2}=y;\sqrt{b^2+c^2}=x\left(x;y;z>0\right)\)

\(\Rightarrow a^2=\frac{y^2+z^2-x^2}{2};b=\frac{x^2+z^2-y^2}{2};c=\frac{x^2+y^2-z^2}{2}\)

Theo đề \(x+y+z=\sqrt{2015}\)

Ta có:\(b+c\le\sqrt{2\left(b^2+c^2\right)}=\sqrt{2}\cdot x\)\(\Rightarrow\frac{a^2}{b+c}\ge\frac{y^2+z^2-x^2}{2\sqrt{2}\cdot x}\)

Tương tự cho 2 cái còn lại rồi, cộng lại:

\(VT\cdot2\sqrt{2}\ge\sqrt{2015}\Rightarrow VT\ge\frac{1}{2}\sqrt{\frac{2015}{2}}\)

Trần Văn Thành
20 tháng 10 2016 lúc 12:26

khong biet

CCDT
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2021 lúc 23:24

\(VT\ge\dfrac{a^2}{\sqrt{2\left(b^2+c^2\right)}}+\dfrac{b^2}{\sqrt{2\left(a^2+c^2\right)}}+\dfrac{c^2}{\sqrt{2\left(a^2+b^2\right)}}\)

Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\Rightarrow x+y+z=\sqrt{2019}\)

\(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{y^2+z^2-x^2}{2}\\b^2=\dfrac{x^2+z^2-y^2}{2}\\c^2=\dfrac{x^2+y^2-z^2}{2}\end{matrix}\right.\) \(\Rightarrow2\sqrt{2}VT\ge\dfrac{y^2+z^2-x^2}{x}+\dfrac{z^2+x^2-y^2}{y}+\dfrac{x^2+y^2-z^2}{z}\)

\(\Rightarrow2\sqrt{2}VT\ge\dfrac{y^2+z^2}{x}+\dfrac{z^2+x^2}{y}+\dfrac{x^2+y^2}{z}-\left(x+y+z\right)\)

\(2\sqrt{2}VT\ge\dfrac{\left(y+z\right)^2}{2x}+\dfrac{\left(z+x\right)^2}{2y}+\dfrac{\left(x+y\right)^2}{2z}-\left(x+y+z\right)\)

\(2\sqrt{2}VT\ge\dfrac{4\left(x+y+z\right)^2}{2x+2y+2z}-\left(x+y+z\right)=x+y+z=\sqrt{2019}\)

\(\Rightarrow VT\ge\dfrac{\sqrt{2019}}{2\sqrt{2}}=\sqrt{\dfrac{2019}{8}}\) (đpcm)

Duyên Hồng Phạm
Xem chi tiết
Duyên Hồng Phạm
18 tháng 2 2020 lúc 11:37

Giúp mình với

Khách vãng lai đã xóa
Tran Le Khanh Linh
12 tháng 4 2020 lúc 17:05

Chứng minh gì vậy bạn

Khách vãng lai đã xóa
Kudo Shinichi
Xem chi tiết
Nyatmax
8 tháng 9 2019 lúc 7:59

Ta co:

\(\sqrt{2\left(b+1\right)}\le\frac{b+3}{2}\Rightarrow\frac{a}{\sqrt{2\left(b+1\right)}}\ge\frac{2a}{b+3}\)

Tuong tu:\(\frac{b}{\sqrt{2\left(c+1\right)}}\ge\frac{2b}{c+3};\frac{c}{\sqrt{2\left(a+1\right)}}\ge\frac{2c}{a+3}\)

\(\Rightarrow\frac{1}{\sqrt{2}}\left(\frac{a}{\sqrt{b+1}}+\frac{b}{\sqrt{c+1}}+\frac{c}{\sqrt{a+1}}\right)\ge2\left(\frac{a}{b+3}+\frac{b}{c+3}+\frac{c}{a+3}\right)\)

\(\frac{a}{b+3}+\frac{b}{c+3}+\frac{c}{a+3}\)

\(=\frac{a^2}{ab+3a}+\frac{b^2}{bc+3b}+\frac{c^2}{ca+3c}\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca+9}\ge\frac{\left(a+b+c\right)^2}{\frac{\left(a+b+c\right)^2}{3}+9}=\frac{9}{\frac{9}{3}+9}=\frac{3}{4}\)

\(\Rightarrow2\left(\frac{a}{b+3}+\frac{b}{c+3}+\frac{c}{a+3}\right)\ge\frac{3}{2}\)

Hay \(\frac{a}{\sqrt{b+1}}+\frac{b}{\sqrt{c+1}}+\frac{c}{\sqrt{a+1}}\ge\frac{3\sqrt{2}}{2}\)

Dau '=' xay ra  khi \(a=b=c=3\)

Nguyễn Mai
Xem chi tiết
Đặng Ngọc Quỳnh
22 tháng 9 2020 lúc 22:30

Đặt đẳng thức là A. Áp dụng bất đẳng thức AM-GM ta có:

\(\sqrt{2b\left(a-b\right)}\le\frac{2b+\left(a+b\right)}{2}=\frac{a+3b}{2}\)

Từ đó: \(A\ge\frac{2a\sqrt{2}}{a+3b}+\frac{2b\sqrt{2}}{b+3c}+\frac{2c\sqrt{2}}{c+3a}\)

Ta sẽ chứng minh: \(M=\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)

Thật vậy, ta có: \(M=\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ca}\)

Theo BĐT AM-GM ta có:

\(ab+bc+ca\le a^2+b^2+c^2\)

Áp dụng BĐT cauchy ta được:

\(M\ge\frac{\left(a+b+c\right)^2}{\frac{4}{3}\left(a^2+b^2+c^2\right)+\frac{8}{3}\left(ab+bc+ca\right)}\)\(=\frac{\left(a+b+c\right)^2}{\frac{4}{3}\left(a+b+c\right)^2}=\frac{3}{4}\)

Vì vậy: \(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)

Từ đó ta có: \(A\ge\frac{2a\sqrt{2}}{a+3b}+\frac{2b\sqrt{2}}{b+3c}+\frac{2c\sqrt{2}}{c+3a}\ge2\sqrt{2}.\frac{3}{4}=\frac{3\sqrt{2}}{2}\)

Vậy đẳng thức xảy xa khi và chỉ khi a=b=c

Khách vãng lai đã xóa
Lê Tuấn Nghĩa
Xem chi tiết
Lê Tuấn Nghĩa
6 tháng 7 2019 lúc 12:54

các bạn giải nhanh giúp mk vs 

Trần Phúc Khang
6 tháng 7 2019 lúc 16:41

BĐT<=> 

\(\left(\frac{2ab}{a+b}-\frac{a+b}{2}\right)+\left(\sqrt{\frac{a^2+b^2}{2}}-\sqrt{ab}\right)\ge0\)

<=> \(-\frac{\left(a-b\right)^2}{2\left(a+b\right)}+\frac{\frac{a^2+b^2}{2}-ab}{\sqrt{\frac{a^2+b^2}{2}}+\sqrt{ab}}\ge0\)

<=> \(\frac{\left(a-b\right)^2}{2(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{ab})}-\frac{\left(a-b\right)^2}{2\left(a+b\right)}\ge0\)

<=> \(a+b\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{ab}\)

<=> \(\frac{a^2+b^2}{2}+ab\ge2\sqrt{\frac{a^2+b^2}{2}.ab}\)luôn đúng

=> ĐPCM

Dấu bằng xảy ra khi a=b

Lê Chí Cường
Xem chi tiết
Thắng Nguyễn
20 tháng 12 2016 lúc 12:07

Ta có: 

\(\sqrt{3a^2+8b^2+14ab}=\sqrt{\left(3a+2b\right)\left(a+4b\right)}\le2a+3b\)

Khi đó \(\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}\ge\frac{a^2}{2a+3b}\), tương tự ta có:

\(\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}+\frac{b^2}{\sqrt{3b^2+8c^2+14bc}}+\frac{c^2}{\sqrt{3c^2+8a^2+14ca}}\)

\(\ge\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\)\(\ge\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=\frac{a+b+c}{5}\)

Anime Tổng Hợp
Xem chi tiết
CCDT
Xem chi tiết