cho S = 30 + 32+ 34+... + 32002
a. Tính S
b. CMR : S chia hết cho 7
Cho S = 30 + 32 + 34 + ... + 32002
a. Tính S
b. Chứng minh S chia hết cho 7
b: \(S=\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)
\(=91\cdot\left(1+...+3^{1998}\right)⋮7\)
Cho S = 30+32+34+36+...+32002
a) Tính S
b) Chứng minh rằng S⋮7
b: \(S=3^0+3^2+3^4+...+3^{2002}\)
\(=\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)
\(=91\cdot\left(1+...+3^{1998}\right)⋮7\)
Cho S=30+32+34+...+32002
a) Tính S
b) Chứng minh S chia hết cho 7
Lời giải:
a.
$S=3^0+3^2+3^4+...+3^{2002}$
$3^2S=3^2+3^4+3^6+...+3^{2004}$
$3^2S-S=(3^2+3^4+3^6+...+3^{2004})-(3^0+3^2+3^4+...+3^{2002})$
$8S=3^{2004}-3^0=3^{2004}-1$
$S=\frac{3^{2004}-1}{8}$
b.
$S=(3^0+3^2+3^4)+(3^6+3^8+3^{10})+....+(3^{1998}+3^{2000}+3^{2002})$
$=(3^0+3^2+3^4)+3^6(3^0+3^2+3^4)+....+3^{1998}(3^0+3^2+3^4)$
$=(3^0+3^2+3^4)(1+3^6+...+3^{1998})$
$=91(1+3^6+...+3^{1998})=7.13(1+3^6+...+3^{1998})\vdots 7$
Ta có đpcm.
Cho tổng S=3+32+33+34+35+36+37+38
Chứng minh rằng S chia hết cho 30
cho s= 30+32+34+36=....+32002
tinh s
c minh s chia het ch 7
tham khảo
https://olm.vn/hoi-dap/detail/49371559502.html
Cho S = 1 + 32 + 34 + \(3^6\) +... + \(3^{98}\). Tính S và chứng minh S chia hết cho 10
Ta có: \(S=1+3^2+3^4+3^6+...+3^{98}\)
\(=\left(1+3^2\right)+\left(3^4+3^6\right)+...+\left(3^{96}+3^{98}\right)\)
\(=10+3^4\cdot10+...+3^{96}\cdot10\)
\(=10\left(1+3^4+...+3^{96}\right)⋮10\)(ĐPCM)
1)2/5+x:5/7=1/3
CMR: 2)B=1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2<1
3)CMR: S=3^2+3^3+...+3^101 chia hết cho 120
4)Cho S=5+5^2+5^3+...+5^2006
a) tính S
b)CMR S chia hết cho 6, và S chia hết cho 30
5) tìm số tự nhiên n sao cho 4n-5 chia hết cho 2n-1
Cho S = 1 + 3 + 32 + 33 + 34 + ..... + 39. Chứng tỏ S chia hết cho 4
\(S=1+3+3^2+3^3+...+3^8+3^9\)
\(=1+3+3^2\left(1+3\right)+...+3^8\left(1+3\right)\)
\(=4\left(1+3^2+...+3^8\right)⋮4\)
\(S=\left(1+3\right)+3^2\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+3^2+...+3^8\right)⋮4\)
cho S=32+33+...+32023 CMR tổng S chia hết cho 156
Cho S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39. Chứng tỏ rằng S chia hết cho 4.
\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)