Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
do minh hoang
Xem chi tiết
Nguyễn Bá Minh
Xem chi tiết
Linh Nhi
21 tháng 8 2017 lúc 8:23

GỌi E;F thứ tự là hình chiếu của B,C trên AM và S1;S2;S3 là diện tích các tam giác AMB;AMC;BMC Ta có:
AM.BE+AM.CFAM.BE+AM.CF \leq AM.BD+AM.CDAM.BD+AM.CD Hay 2S1+2S22S1+2S2 \leq AM.(BD+CD)=AM.BC
Dấu = xảy ra khi AM vuông góc BC
tương tự có: 2S1+2S32S1+2S3 \leq BM.AC
2S2+2S32S2+2S3 \leq CM.AB
\Rightarrow AM.BC+BM.AC+CM.AB \geq 4SABC4SABC
dấu = xảy ra khi M là trực tâm tam giác ABC


D là giao điểm của AM và BC

chúc bạn học tốt

ĐÚNG 100%

Mai Thanh Hoàng
Xem chi tiết
dia fic
Xem chi tiết
Anh Bùi Thị
28 tháng 12 2021 lúc 21:37

Anh Bùi Thị
28 tháng 12 2021 lúc 21:38

hello7156
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 1 2022 lúc 14:51

Kẻ \(MI\text{//}AC;DH\bot MN\left(H\in MN\right);IK\bot MN\left(K\in MN\right)\)

\(DHKI\) là hcn \(\Rightarrow DH=IK\Rightarrow S_{DMN}=S_{IMN}\)

Ta có \(\left\{{}\begin{matrix}\Delta AMN\sim\Delta ABC\\\Delta BMI\sim\Delta ABC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{S_{AMN}}{S_{ABC}}=\left(\dfrac{AM}{AB}\right)^2\\\dfrac{S_{BMI}}{S_{ABC}}=\left(\dfrac{BM}{AB}\right)^2\end{matrix}\right.\)

\(\Rightarrow\dfrac{S_{AMN}+S_{BMI}}{S_{AB}}=\dfrac{AM^2+BM^2}{AB^2}\ge\dfrac{\dfrac{1}{2}\left(AM+MB\right)^2}{AB^2}\)

\(\Rightarrow\dfrac{S_{ABC}-S_{MNCI}}{S_{ABC}}\ge\dfrac{1}{2}\\ \Rightarrow1-\dfrac{S_{MNCI}}{S_{ABC}}\ge\dfrac{1}{2}\Rightarrow\dfrac{S_{MNCI}}{S_{ABC}}\le\dfrac{1}{2}\\ \Rightarrow S_{MNCI}\le\dfrac{1}{2}S_{ABC}\\ \Rightarrow2\cdot S_{DMN}\le\dfrac{1}{2}S_{ABC}\\ \Rightarrow S_{DMN}\le\dfrac{1}{4}S_{ABC}\)

Dấu \("="\Leftrightarrow AM=MB\Leftrightarrow M\) là trung điểm \(AB\Leftrightarrow N\) là trung điểm AC

Khi đó d đi qua trung điểm AB và AC

Trung Nguyen
Xem chi tiết
Ngọc Thư
Xem chi tiết
Phương Nguyễn 2k7
Xem chi tiết
liz minh dũng
Xem chi tiết