Cho tam giác ABC vuông tại A , có AB = AC . Gọi K là trung điểm của cạnh BC
a) CM : Tam giác AKB = Tam giác AKC
b Từ C kẻ đường vuông góc với BC cắt AB tại N
c ) CM : CN = CB
cho tam giác ABC vuông tại A , có AB=AC.Gọi K là trung điểm cạnh BC .
a) Cm: tam giác AKB= tam giác AKC.
b)Từ C kẻ đường vuông góc vs BC cắt AB tại N. Cm: NC song song vs AK
c)cm: CN=CB
cho tam giác ABC vuông tại A có AB=AC gọi K là trung điểm của cạnh BC
a,Chứng minh Tam giác AKB=Tam giác AKC và AK vuông góc BC
b,Từ C kẻ đường vuông góc với BC cắt AB tại E.Chứng minh AK//CE và CE=CB
c, So sánh AK và CE
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
=>ΔAKB=ΔAKC
=>góc AKB=góc AKC=180/2=90 độ
=>AK vuông góc BC
b: AK vuông góc BC
CE vuông góc CB
=>AK//CE
Xét ΔCEB vuông tại C có góc B=45 độ
nên ΔCEB vuông cân tại C
=>CE=CB
c: AK=1/2CE(do AK là đường trung bình của ΔCEB)
cho tam giác ABC vuông tại A có AB=AC . Gọi K là trung điểm của cạnh BC
a) Chứng minh tam giác AKB = tam giác AKC vf AK vuông góc với BC
b) Từ C kẻ đường vuông góc với BC, nó cắt AB tại E. Chứng minh EC//AK
c) Chứng minh CE=CB
a/ Ta có: AB = AC (gt); BK = KC (vì K là trung điểm của BC); AK là cạnh chung
=>> tg AKB = tg AKC (c.c.c)
Ta có: AB = AC (gt) => tg ABC vuông cân tại A
mà K là trung điểm của BC
=>> AK là đường trung trực của tg ABC
=> AK\(\perp\) BC
b/ Ta có: EC \(\perp BC\) (gt) và AK\(\perp BC\) (cmt)
=>> EC // AK
c/ AK là đường cao đồng thời là đường phân giác của tam giác ABC vuông cân tại A
=> \(\widehat{BAK}\) = \(\widehat{KAC}\) = 45 độ
=> tg AKB vuông cân tại B => \(\widehat{KBA}=\widehat{BAK}\) (1)
Ta có: EC // AK (cmt) => \(\widehat{BAK}=\widehat{BEC}\) (2)
Từ (1) vả (2) => \(\widehat{KBA}=\widehat{BEC}\)
=> tg BCE cân tại C =>> CE = CB
cho tam giác ABC cân tại A ,có AB=AC . gọi K là trung điểm của cạnh BC.
a)chứng minh tam giác AKB=tam giác AKC và AK vuông góc vói BC .
b) từ C kẻ đường vuông góc với BC,nó cắt AB tại E.chứng minh EC song song AK .
c)chứng minh CE=CB
a) Xét tam giác AKB và tam giác AKC , có AB=AC (GT) BK là cạnh chung KB=KC ( K là trung điểm của BC) Do vậy tam giác AKB = tam giác AKC (c.c.c) b) Có tam giác AKB = AKC (cmt)
=> ˆAKB=ˆAKC⇒AKB^=AKC^. Mà ˆAKB+ˆAKC=ˆBKC=1800AKB^+AKC^=BKC^=1800. Do đó:
ˆAKB=ˆAKC=900⇒AK⊥BCAKB^=AKC^=90⇒AK⊥BC
Ta thấy: EC⊥BC ; AK⊥BC (cmt)
⇒EC∥AK⇒EC∥AK ()
c) Vì tam giác ABC là tam giác vuông cân tại A nên ˆB=45
Tam giác CBE vuông tại C có ˆB=45 ⇒ˆE=1800−(ˆC+ˆB)=180−(90+45)=45
⇒ˆE = ˆB⇒E^=B^ nên tam giác CBE cân tại C. Do đó CE=CB
Cho tam giác ABC vuông góc tại A,có AB=AC.Gọi K là trung điểm của cạnh BC
a, Chứng minh tam giác AKB = tam giác AKC và AK vuông góc với BC
b,Từ C kẻ đường thẳng vuông góc với BC,cắt AB tại E,Chứng minh EC song song với AK
c, Chứng minh CE=CB
Lời giải:
a) Xét tam giác AKB và AKC có:
AB=AC (giả thiết)
KB=KC (do K là trung điểm của BC)
AK chung
Do đó: \(\triangle AKB=\triangle AKC(c.c.c)\) (đpcm)
\(\Rightarrow \widehat{AKB}=\widehat{AKC}\). Mà \(\widehat{AKB}+\widehat{AKC}=\widehat{BKC}=180^0\). Do đó:
\(\widehat{AKB}=\widehat{AKC}=90^0\Rightarrow AK\perp BC\) (đpcm)
b)
Ta thấy: \(EC\perp BC; AK\perp BC\) (đã cm ở phần a)
\(\Rightarrow EC\parallel AK\) (đpcm)
c) Vì tam giác ABC là tam giác vuông cân tại A nên \(\widehat{B}=45^0\)
Tam giác CBE vuông tại C có \(\widehat{B}=45^0\) \(\Rightarrow \widehat{E}=180^0-(\widehat{C}+\widehat{B})=180^0-(90^0+45^0)=45^0\)
\(\Rightarrow \widehat{E}=\widehat{B}\) nên tam giác CBE cân tại C. Do đó CE=CB (đpcm)
Cho tam giác ABC vuông tại A,có AB =AC .Gọi K là trung điểm của cạnh BC
a,Chứng minh tam giác AKB = tam giác AKC và AK vuông góc BC
b,Từ C kẻ đường vuông góc với BC ,nó cắt đường thẳng AB tại E.Chứng minh EC//AK
c,Tính số đo AEC
CHO TAM GIÁC ABC VUÔNG TẠI A,CÓ AB=AC. GỌI K LÀ TRUNG ĐIỂM CỦA CẠNH BC
a,CHỨNG MINH TAM GIAC AKB = TAM GIÁC AKC VÀ AK VUÔNG GÓC VỚI BC
b,từ C kẻ đường vuông góc với BC ,nó cắt AB tại E.Chứng minh EC//AK
Chứng minh CE = CB
Cho tam giác ABC vuông tại A,có AB=AC gọi K là trung điểm của cạnh BC. Chứng minh rằng:
a) Tam giác AKB=tam giác AKC
b)Từ C kẻ đường thẳng vuông góc với BC cắt AB tại N. Chứng minh NC//ẠK
c)CN=CB
GIÚP MIK VS MẤY BẠN! THANKS mn NHIỀU
Câu trả lời
a.Vì AB=AC(gt)=> góc ABC=góc ACB ( tam giác ABC vuông cân)
mặt khác BK=KC(trung điểm BC)
=> tam giác AKB=tam giác AKC (c.g.c)
b.Vì tam giác AKB=tam giác AKC (theo câu a)
=> góc AKB=góc AKC
Mà góc AKB+góc AKC=180°
=>góc AKB=góc AKC=90°=> AK vuông góc với BC
c.Vì EC vuông góc với BC
AK vuông góc với BC
=>EC//AK =>E//K
phần a , có ab = ac , bk = kc , \(\widehat{b}\)=\(\widehat{c}\). phần b , có NC vuông vs BC , AK vuông BC [ tc tam giác vuông cân] suy ra chúng song song vì cùng vuông vs BC , phần c có hai góc a bằng 90 độ , góc B bằng góc N do cùng phụ vs góc BCN , ac chung suy ra hai tam giác BCA và ACN bằng nhau , suy ra CN =CB