Tồn tại bao nhiêu số nguyên không âm x thỏa mãn \(|x-5|=5-x\)
chứng minh không tồn tại cặp số nguyên ( x;y) nào thỏa mãn |9x-8y| + | 7x-6y|=5
tự làm là hạnh phúc của mỗi công dân.
có bao nhiêu số nguyên y sao cho tồn tại \(x\in\left(\dfrac{1}{3};5\right)\) thỏa mãn \(27^{3x^2+xy}=\left(1+xy\right)27^{15x}\) ?
Có bao nhiêu số nguyên a (a≥ 2) sao cho tồn tại số thực x thỏa mãn: (alog(x) + 2)log(a) = x - 2 ?
Trắc nghiệm rất lẹ (chắc vài giây), còn tự luận hơi lâu:
Hiển nhiên chỉ cần xét với \(x>2\) (vì vế trái luôn dương). Chú ý rằng \(a^{logx}=x^{loga}\)
Với \(a=10\Rightarrow x+2=x-2\) vô nghiệm (ktm)
- Trắc nghiệm: với \(a>10\Rightarrow\left(x^{loga}+2\right)^{loga}>x+2>x-2\) pt vô nghiệm
Với \(a< 10\) chọn 2 giá trị a=2 và a=9 để kiểm tra hàm \(\left(x^{loga}+2\right)^{loga}-x+2\) thấy đều đổi dấu ở chế độ table \(\Rightarrow a=\left\{2;3;...;9\right\}\) có 8 giá trị nguyên
- Tự luận: xét với \(x>2\), đặt \(loga=m>0\) pt trở thành: \(\left(x^m+2\right)^m=x-2\)
Đặt \(x^m+2=t\Rightarrow\left\{{}\begin{matrix}x^m=t-2\\t^m=x-2\end{matrix}\right.\)
\(\Rightarrow x^m-t^m=t-x\Rightarrow x^m+x=t^m+t\) (1)
Xét hàm \(f\left(x\right)=x^m+x\Rightarrow f'\left(x\right)=mx^{m-1}+1>0\Rightarrow f\left(x\right)\) đồng biến
Do đó \(\left(1\right)\Rightarrow x=t\Rightarrow x^m=x-2\Rightarrow x^m-x+2=0\)
Xét hàm \(f\left(x\right)=x^m-x+2\)
- Với \(m>1\Rightarrow f'\left(x\right)=m.x^{m-1}-1>1-1\ge0\Rightarrow f\left(x\right)\) đồng biến
\(\Rightarrow f\left(x\right)>f\left(2\right)=2^m-2+2=2^m>0\Rightarrow f\left(x\right)\) vô nghiệm (ktm)
- Với \(0< m< 1\) ta có:
\(f\left(2\right)=2^m>0\)
\(\lim\limits_{x\rightarrow+\infty}\left(x^m-x+2\right)=\lim\limits_{x\rightarrow+\infty}x\left(x^{m-1}-1+\dfrac{2}{x}\right)\)
Chú ý rằng \(m< 1\Rightarrow x^{m-1}=\dfrac{1}{x^{1-m}}\rightarrow0\) khi \(x\rightarrow+\infty\Rightarrow x^{m-1}-1+\dfrac{2}{x}\rightarrow-1\Rightarrow\lim\limits_{x\rightarrow+\infty}\left(x^m-x+2\right)=-\infty\)
\(\Rightarrow f\left(2\right).\lim\limits_{x\rightarrow+\infty}f\left(x\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thỏa mãn \(x>2\)
Vậy \(0< m< 1\) hay \(0< loga< 1\Rightarrow2\le a< 10\Rightarrow a=\left\{2;3;...;9\right\}\)
a ) Có bao nhiêu cặp số nguyên không âm x , y thỏa mãn x + y = 1 ?
b ) Có bao nhiêu cặp số nguyên x , y thỏa mãn x + y = 1 ?
Các bạn giải chi tiết rõ ràng nhé
a)Vì x,y ko âm =>x,y>0
=>ko tồn tại
b)Có vô số nghiệm x,y
Vd:1 và 0
-2 và 3
-3 và 4
.....
Thắng Nguyễn : x,y ko âm đâu có nghĩa là x,y > 0
Theo tớ thì có 2 cặp:
x=0 và y = 1
x=1 và y=0
chứng minh rằng không tồn tại đa thức f(x) với hệ số nguyên thỏa mãn f(7)=5,f(15)=9
Có bao nhiêu số nguyên y sao cho tồn tại x∈ (\(\dfrac{1}{2}\) ;8) thỏa mãn 92\(x^2\)+xy= (1+xy).915x
\(I=\int\limits^{-1}_{-2}\dfrac{6a}{e^x}dx-\int\limits^{-1}_{-2}\dfrac{f\left(x\right)}{e^x}dx=J-I_1\)
Xét \(I_1\) , đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=e^{-x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=-e^{-x}\end{matrix}\right.\)
\(\Rightarrow I_1=-f\left(x\right).e^{-x}|^{-1}_{-2}+\int\limits^{-1}_{-2}\dfrac{f'\left(x\right)}{e^x}dx=-f\left(-1\right).e+f\left(-2\right).e^2+I_2\)
Xét \(I_2\) , đặt \(\left\{{}\begin{matrix}u=f'\left(x\right)\\dv=e^{-x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f''\left(x\right)dx\\v=-e^{-x}\end{matrix}\right.\)
\(\Rightarrow I_2=-f'\left(x\right).e^{-x}|^{-1}_{-2}+\int\limits^{-1}_{-2}\dfrac{f''\left(x\right)}{e^x}dx=-f'\left(-1\right).e+f'\left(-2\right).e^2+I_3\)
Xét \(I_3\) , đặt \(\left\{{}\begin{matrix}u=f''\left(x\right)\\dv=e^{-x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'''\left(x\right)dx=6a.dx\\v=-e^{-x}\end{matrix}\right.\)
\(\Rightarrow I_3=-f''\left(x\right).e^{-x}|^{-1}_{-2}+\int\limits^{-1}_{-2}\dfrac{6a}{e^x}dx=-f''\left(-1\right).e+f''\left(-2\right).e^2+J\)
Do đó:
\(I=J+f\left(-1\right).e-f\left(-2\right).e^2+f'\left(-1\right).e-f'\left(-2\right).e^2+f''\left(-1\right).e-f''\left(-2\right).e^2-J\)
\(=e\left[f\left(-1\right)+f'\left(-1\right)+f''\left(-1\right)\right]-e^2\left[f\left(-2\right)+f'\left(-2\right)+f''\left(-2\right)\right]\)
\(=e.g\left(-1\right)-e^2.g\left(-2\right)=e+e^2=e\left(e+1\right)\)
A, có bao nhiêu cặp số nguyên không âm x,y thỏa mãn x+y=1
B, có bao nhiêu cặp số nguyên (x,y) thỏa mãn x+y =1
x=0 và y = 1
x=1 và y=0
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
A, 1 cặp
B, vô số cặp
Chúc bạn học giỏi
Tk cho mình nhé
Tồn tại hay không đa thức P(x) có các hệ số nguyên thỏa mãn điều kiện P(5) = 2 ^2020 ,P(13) = 7^ 2020 .
Bài 8. Cho số nguyên dương n. Tồn tại hay không số nguyên dương d thỏa mãn: d là ước của 3n^2 và n^2 +d là số chính phương. Bài 9. Chứng minh rằng không tồn tại hai số nguyên dương x, y thỏa mãn x^2 +y+1 và y^2 +4x+3 đều là số chính phương.
Ai đó giúp mình đi mòaa🤤🤤🤤