tìm min \(A=\sqrt{x^2+4x+8}+\sqrt{x^2-2x+2}\)
tìm min \(A=\sqrt{x^2+10x+26}+\sqrt{x^2+4x+4}\)
\(B=\sqrt{x^2+4x+8}+\sqrt{x^2-2x+2}\)
Tìm Min \(P=\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}\)
\(P=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-4\right)^2}=\left|x-1\right|+\left|4-x\right|\ge\left|x-1+4-x\right|=3\)
\(P_{min}=3\) khi \(1\le x\le4\)
a,tìm min mã của biểu thức sau\(y=\sqrt{x^2-2\sqrt{2}x+2}+\sqrt{y^2-2y+1}\)
biết\(|x|+|y|=5\)
b, tìm min :\(y=\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\)
\(hcmuop\underrightarrow{jjjjjjjjj}me\)
tìm min
a)\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}\)
b)B=\(\sqrt{x-2\sqrt{x-1}}-\sqrt{x+2\sqrt{x-1}}\)
a ) \(A=\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
\(\ge\left|x-1+3-x\right|+\left|x-2\right|=\left|x-2\right|+2\ge2\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\\left|x-2\right|=0\end{cases}\Rightarrow x=2}\)(TM)
Vậy \(A_{min}=2\Leftrightarrow x=2\)
b ) \(B=\sqrt{x-2\sqrt{x-1}}-\sqrt{x+2\sqrt{x-1}}\)
\(=\sqrt{x-1-2\sqrt{x-1}+1}-\sqrt{x-1+2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}-\sqrt{\left(\sqrt{x-1}+1\right)^2}\)
\(=\left|\sqrt{x-1}-1\right|-\left|\sqrt{x-1}+1\right|\)
\(\le\left|\sqrt{x-1}-1-\sqrt{x-1}-1\right|=2\)có GTLN là 2
Tìm Min A = \(\sqrt{-x^2+2x+8}-\sqrt{-x^2+x+2}\)
Tìm điều kiện có nghĩa:
1) \(\sqrt{2x^2}\)
2) \(\sqrt{-x}\)
3) \(\sqrt{-x^2-3}\)
4) \(\sqrt{x^2+2x+3}\)
5) \(\sqrt{-a^2+8a-16}\)
6) \(\sqrt[]{16x^2-25}\)
7) \(\sqrt{4x^2-49}\)
8) \(\sqrt{8-x^2}\)
9) \(\sqrt{x^2-12}\)
10) \(\sqrt{x^2+2x-3}\)
11) \(\sqrt{2x^2+5x+3}\)
12) \(\sqrt{\dfrac{4}{x-1}}\)
13) \(\sqrt{\dfrac{-1}{x-3}}\)
14) \(\sqrt{\dfrac{-3}{x+2}}\)
15) \(\sqrt{\dfrac{1}{2a-1}}\)
16) \(\sqrt{\dfrac{2}{3-2a}}\)
17) \(\sqrt{\dfrac{-1}{2a-5}}\)
18) \(\sqrt{\dfrac{-2}{3-5a}}\)
19) \(\sqrt{\dfrac{-a}{5}}\)
20) \(\dfrac{1}{\sqrt{-3a}}\)
1) \(ĐK:x\in R\)
2) \(ĐK:x< 0\)
3) \(ĐK:x\in\varnothing\)
4) \(=\sqrt{\left(x+1\right)^2+2}\)
\(ĐK:x\in R\)
5) \(=\sqrt{-\left(a-4\right)^2}\)
\(ĐK:x\in\varnothing\)
tìm Min : \(\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\)
Nguyễn Minh Quang 123 tối đăng lại mình giải cho
Tìm Max của
1) \(5+\sqrt{-4x^2-4x}\)
2) \(\sqrt{x-2}+\sqrt{4-x}\)
3) \(x+\sqrt{2-x^2}\)
4) \(2x+\sqrt{4-2x^2}\)
Tìm Min của
1) \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}\)
2) \(\sqrt{x\left(x+1\right)\left(x+2\right)\left(x+3\right)+5}\)
a) \(A=5+\sqrt{-4x^2-4x}\)
\(A==5+\sqrt{-4x\left(x+1\right)}\)
Có: \(-4x\left(x+1\right)\le0\)
\(\Rightarrow\sqrt{-4x\left(x+1\right)}=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy: \(Max_A=5\) tại \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
b) \(B=\sqrt{x-2}+\sqrt{4-x}\)
ĐKXĐ: \(\hept{\begin{cases}x\ge2\\x\le4\end{cases}}\Rightarrow x\in\left\{2;3;4\right\}\)
Thay \(x=2\Rightarrow\sqrt{2-2}+\sqrt{4-2}=\sqrt{2}\)
Thay \(x=3\Rightarrow\sqrt{3-1}+\sqrt{4-3}=2\)
Thay \(x=4\Rightarrow\sqrt{4-2}+\sqrt{4-4}=\sqrt{2}\)
Vậy: \(Max_B=2\) tại \(x=3\)
Bài 2:
a)\(A=\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
\(\ge x-1+0+3-x=2\)
Dấu = khi \(\hept{\begin{cases}x-1\ge0\\x-2=0\\x-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x=2\\x\le3\end{cases}}\Leftrightarrow x=2\)
Vậy MinA=2 khi x=2
bÀI 2 PHẦN b bạn nhân 2 ngoặc 1 r` đặt ẩn là t =>min...
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
tích mình với
ai tích mình
mình tích lại
thanks