Những câu hỏi liên quan
CCDT
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2021 lúc 23:24

\(VT\ge\dfrac{a^2}{\sqrt{2\left(b^2+c^2\right)}}+\dfrac{b^2}{\sqrt{2\left(a^2+c^2\right)}}+\dfrac{c^2}{\sqrt{2\left(a^2+b^2\right)}}\)

Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\Rightarrow x+y+z=\sqrt{2019}\)

\(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{y^2+z^2-x^2}{2}\\b^2=\dfrac{x^2+z^2-y^2}{2}\\c^2=\dfrac{x^2+y^2-z^2}{2}\end{matrix}\right.\) \(\Rightarrow2\sqrt{2}VT\ge\dfrac{y^2+z^2-x^2}{x}+\dfrac{z^2+x^2-y^2}{y}+\dfrac{x^2+y^2-z^2}{z}\)

\(\Rightarrow2\sqrt{2}VT\ge\dfrac{y^2+z^2}{x}+\dfrac{z^2+x^2}{y}+\dfrac{x^2+y^2}{z}-\left(x+y+z\right)\)

\(2\sqrt{2}VT\ge\dfrac{\left(y+z\right)^2}{2x}+\dfrac{\left(z+x\right)^2}{2y}+\dfrac{\left(x+y\right)^2}{2z}-\left(x+y+z\right)\)

\(2\sqrt{2}VT\ge\dfrac{4\left(x+y+z\right)^2}{2x+2y+2z}-\left(x+y+z\right)=x+y+z=\sqrt{2019}\)

\(\Rightarrow VT\ge\dfrac{\sqrt{2019}}{2\sqrt{2}}=\sqrt{\dfrac{2019}{8}}\) (đpcm)

Bình luận (0)
Trân Họ Trài
Xem chi tiết
Incursion_03
21 tháng 6 2019 lúc 9:01

Ta có bđt quen thuộc sau \(\frac{x}{y+z}< \frac{x+m}{y+z+m}\) 

Áp dụng ta được \(\frac{a}{b+c}< \frac{a+a}{a+b+c}=\frac{2a}{a+b+c}\)
Chứng minh tương tự \(\frac{b}{c+a}< \frac{2b}{a+b+c}\)

                                     \(\frac{c}{a+b}< \frac{2c}{a+b+c}\)

Do đó \(VT< \frac{2a+2b+2c}{a+b+c}=2\)

Ta đi chứng minh VP > 2 

Áp dụng bđt Cô-si có \(a+\left(b+c\right)\ge2\sqrt{a\left(b+c\right)}\)

                             \(\Rightarrow\sqrt{a\left(b+c\right)}\le\frac{a+b+c}{2}\)

                             \(\Rightarrow\sqrt{\frac{b+c}{a}}\le\frac{a+b+c}{2a}\)

                             \(\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)

Chứng minh tương tự \(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c}\)

                                    \(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)

Cộng 3 vế lại ta được \(VP\ge\frac{2a+2b+2c}{a+b+c}=2\)

Do đó \(VP\ge2>VT\)

\(\Rightarrow VT< VP\left(Q.E.D\right)\)

Dấu "=" không xảy ra

Bình luận (0)
chàng trai 16
Xem chi tiết
Ngô Huy Hoàng
Xem chi tiết
Nguyễn Thiều Công Thành
22 tháng 8 2017 lúc 14:19

doan thi khanh linh câm cái mồm đi.đã ngu lại còn thích k

Bình luận (0)
Nguyễn Thiều Công Thành
22 tháng 8 2017 lúc 14:24

áp dụng co si ta có:

\(\frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\frac{2\sqrt{bc}}{\sqrt{a}}+\frac{2\sqrt{ca}}{\sqrt{b}}+\frac{2\sqrt{ab}}{\sqrt{c}}\)

\(=\left(\frac{\sqrt{bc}}{\sqrt{a}}+\frac{\sqrt{ca}}{\sqrt{b}}\right)+\left(\frac{\sqrt{ca}}{\sqrt{b}}+\frac{\sqrt{ab}}{\sqrt{c}}\right)+\left(\frac{\sqrt{ab}}{\sqrt{c}}+\frac{\sqrt{bc}}{\sqrt{a}}\right)\)

\(\ge2\sqrt{a}+2\sqrt{b}+2\sqrt{c}=\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

\(\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\sqrt[3]{\sqrt{abc}}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)

\(\Rightarrow Q.E.D\)

Bình luận (0)
Phan Ngô Ngọc Bích
Xem chi tiết
๖ۣۜLuyri Vũ๖ۣۜ
Xem chi tiết
Trí Tiên亗
23 tháng 9 2020 lúc 21:19

Áp dụng cách đánh giá quen thuộc 

\(3\left(\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}\right)\ge\left(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\right)^2\)

Hay \(\sqrt{3\left(a^2+b^2+c^2\right)}\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)

Ta cần chỉ ra được \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)

Ta đánh giá theo bất đẳng thức Bunhiacopxki dạng phân thức, Cần chú ý đến \(a^2+b^2+c^2\). Ta được

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}=\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)

Ta cần chứng minh được

\(\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)

Hay \(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b+b^2c+c^2a\right)^2\)

Dễ thấy \(\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Do đó \(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\left(a^2+b^2+c^2\right)\)

Theo bất đẳng thức Bunhiacopxki 

\(\left(a^2b^2+b^2c^2+c^2a^2\right)\left(a^2+b^2+c^2\right)\ge\left(a^2b+b^2c+c^2a\right)^2\)

Do đó ta được \(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b+b^2c+c^2a\right)^2\)

Bài toán được chứng minh :3

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Việt Hà
Xem chi tiết
Trương Thanh Long
13 tháng 10 2019 lúc 22:49

Theo BĐT Cauchy : 

\(\sqrt{\frac{b+c}{a}.1}\le\frac{\frac{b+c}{a}+1}{2}=\frac{a+b+c}{2a}\)

Do đó : \(\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)

Tương tự : \(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c}\)

              \(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)

\(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu "=" xảy ra khi và chỉ khi :

\(\hept{\begin{cases}a=b+c\\b=c+a\\c=a+b\end{cases}\Rightarrow a+b+c=0}\), vô lí vì a, b, c là các số dương nên đẳng thức không xảy ra.

Vậy \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\).

Bình luận (0)
Trương Thanh Long
13 tháng 10 2019 lúc 22:57

Chết cha, mình bị thiếu chỗ dấu "=" xảy ra là c = a + b.

Bình luận (0)
Hắc Thiên
Xem chi tiết
luu thanh huyen
Xem chi tiết
Tuan
9 tháng 9 2018 lúc 12:44

k mk đi

ai k mk

mk k lại

thanks

Bình luận (0)
Phùng Minh Quân
9 tháng 11 2018 lúc 18:20

Đề như này đúng ko \(3\le\frac{1+\sqrt{a}}{1+\sqrt{b}}+\frac{1+\sqrt{b}}{1+\sqrt{c}}+\frac{1+\sqrt{c}}{1+\sqrt{a}}< 3+\sqrt{a}+\sqrt{b}+\sqrt{c}\)

Dấu \("\ge"\) thứ 2 dấu "=" ko xảy ra 

Đặt \(A=\frac{1+\sqrt{a}}{1+\sqrt{b}}+\frac{1+\sqrt{b}}{1+\sqrt{c}}+\frac{1+\sqrt{c}}{1+\sqrt{a}}\)

\(A\ge3\sqrt[3]{\frac{\left(1+\sqrt{a}\right)\left(1+\sqrt{b}\right)\left(1+\sqrt{c}\right)}{\left(1+\sqrt{b}\right)\left(1+\sqrt{c}\right)\left(1+\sqrt{a}\right)}}=3\) \(\left(1\right)\)

CM : \(\frac{1+\sqrt{x}}{1+\sqrt{y}}< 1+\sqrt{x}\) ( với a, b nguyên dương ) 

\(\Leftrightarrow\)\(\left(1+\sqrt{x}\right)\left(1+\sqrt{y}\right)-\left(1+\sqrt{x}\right)>0\)

\(\Leftrightarrow\)\(\left(1+\sqrt{x}\right)\sqrt{y}>0\) ( luôn đúng với mọi a, b nguyên dương ) 

\(\Rightarrow\)\(A< 1+\sqrt{a}+1+\sqrt{b}+1+\sqrt{c}=3+\sqrt{a}+\sqrt{b}+\sqrt{c}\) \(\left(2\right)\)

Từ (1) và (2) suy ra \(3\le\frac{1+\sqrt{a}}{1+\sqrt{b}}+\frac{1+\sqrt{b}}{1+\sqrt{c}}+\frac{1+\sqrt{c}}{1+\sqrt{a}}< 3+\sqrt{a}+\sqrt{b}+\sqrt{c}\) ( đpcm ) 

Chúc bạn học tốt ~ 

Bình luận (0)