Giúp mình với các bạn ơi
Chứng minh S =1+5^1+5^2+5^3+...+5^59 chia hết cho 31
Chứng minh:
A= 1+4+4^2+4^3+4^4+...+4^59 chia hết cho 5;21;85
B=5+5^1+5^2+5^3+.....+5^203 chia hết cho 31
Giúp mình nha
Thank you
Cho S = 2 + 23 + 25 + ....... + 259
a) Chứng tỏ S chia hết cho 5
b) Chứng tỏ S chia hết cho 3, chia hết cho 7
c) Tính gọn S
d) Chứng minh rằng: 6 x S + 4 là 1 số chính phương
e) Tìm chữ số tận cùng của S
Mong các bạn giúp mình trước tối thứ 4 ngày 31 nha! Các bạn làm đc bao nhiêu câu thì cứ làm giúp mình nha!
a) Ta có:
\(S=2+2^3+2^5+...+2^{59}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)\)
\(S=2.\left(1+2^2\right)+2^3.\left(1+2^2\right)+...+2^{57}.\left(1+2^2\right)\)
\(S=\left(2+2^3+2^5+...+2^{57}\right).5⋮5\)
Vậy \(S⋮5\)
a) Ta có:
\(S=2+2^3+2^5+...+2^{99}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)
\(S=2\left(1+2^2\right)+2^3\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)
\(S=2.5+2^3.5+...+2^{97}.5\)
\(S=\left(2+2^3+...+2^{97}\right).5⋮5\)
\(\Rightarrow S⋮5\)
c) \(S=2+2^3+2^5+...+2^{59}\)
\(4S=2^3+2^5+2^7+...+2^{61}\)
\(4S-S=\left(2^3+2^5+2^7+...+2^{61}\right)-\left(2+2^3+2^5+...+2^{59}\right)\)\(\Rightarrow3S=2^{61}-2\)
\(\Rightarrow S=\frac{2^{61}-2}{3}\)
chứng minh rằng :A =1+5+5^2+...+5^403+5^404 chia hết cho 31
Các bạn giúp mình nhé
Các bạn ơi giúp mình giải bài toán này nhé !
P/s: Nhớ giải chi tiết giùm mình nhé (Thanks!!!!)
a) chứng minh rằng với mọi số nguyên n thì :(n^2-3n+1)(n+2)-n^3+2 chia hết cho 5
b) chứng minh rằng với mọi số nguyên n thì: (6n+1)(n+5)-(3n+5)(2n-10) chia hết cho 2
bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...) hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !
bạn hãy nhân đa thức với đa thức nhé !
Mình hướng dẫn bạn rồi đấy ! ok!
k nha !
S= 5+5 mũ 2+ 5mux 3+.....+ 5 mũ 21
Chứng minh 5 chia hết cho 5
Các bn ơi giúp mình với!
Chứng minh rằng : S=5+52+53+54+...+52012+52013 chia hết cho 31
Các bạn làm nhanh giúp mình nhé !
S=( 5+5^2+5^3)+....+(5^2011+5^2012+5^2013). Nhóm 3 số 1 bộ
S=5(1+5+5^2)+.....+5^2011(1+5+5^2)
S=5.31+.....+5^2011.31
S=31(5+....+5^2011) chia hết cho 31(đpcm)
Tick nhé.
Tiện thể cho mình hỏi cách viết số mũ lên cao thế nào vậy
ĐỀ CÓ SAI K !?
CÓ THÌ SỬA
K THÌ MÌNH NGHĨ CHO
\(S=5+5^2+5^3+.....+5^{2013}\)
\(=\left(5+5^2+5^3\right)+.....+\left(5^{2011}+5^{2012}+5^{2013}\right)\)
\(=\left(5.1+5.5+5.25\right)+....+\left(5^{2011}.1+5^{2011}.5+5^{2011}.25\right)\)
\(=31.5+31.5^4+....+31.5^{2011}\)
= 31.(5+54+....+52011)
S chia hết cho 31
Chứng minh rằng:
a/ A = 2+2^2+2^3+....+2^60 chia hết cho 15
b/ B = 1+5+5^2+5^3+....+5^56+5^59+5^59+5^98chia hết cho 31
a)A=2+2^2+2^3+...+2^60 chia hết cho 15
=>(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)
=>2.(1+2+2^2+2^3)+...+2^57+(1+2+2^2+2^3)
=>2.15+...+2^57.15
Vì 15 chia hết choo 15
=>a chia hết cho 15
b)B=1+5+5^2+5^3+...+5^56+5^59+5^98 chia hết cho 31
=>(1+5+5^2)+...+5^56.(1+5+5^2)
=>31+....+5^56.3vi2 31 chia hết cho 31
=>B chia hết cho 31
Ta có :
=2+2^2+2^3+...+2^60 = 2(1+2+2^2+2^3) + 2^5(1+2+2^2+2^3) + ... + 2^57(1+2+2^2+2^3)
A=(2+2^5+...+2^57)*15 chia het cho 15
Chứng tỏ:1+5+5^2+....+5^99 chia hết 31
Các bạn giúp mình với mình cảm ơn rất nhiều
Số số hạng: (99-0):1+1=99(số hạng)
1+5+5^2+...+5^99=(1+5+5^2)+5^3x(1+5+5^2)+5^6x(1+5+5^2)+...+5^97x(1+5+5^2) [vì có 99 số hạng chia hết cho 3]
=31+5^3x31+5^6x31+...+5^97x31=(1+5^3+5^6+...+5^97)x31 chia hết cho 31.
Số số hạng là :
( 99 - 0 ) : 1 + 1 = 99 ( số hạng )
\(1+5+5^2\)\(+...+5^{99}\)\(=\)\(\left(1+5+5^2\right)+5^3\)\(.\)\(\left(1+5+5^2\right)\)\(+\)\(5^6\)\(.\)\(\left(1+5+5^2\right)\)\(+...+\)\(5^{99}\)\(.\)\(\left(1+5+5^2\right)\) ( Vì có 99 số hạng chia hết cho 3 )
\(\Rightarrow\)\(31+5^3\)\(.\)\(31\)\(+\)\(5^6\)\(.\)\(31\)\(+...+\)\(5^{99}\)\(.\)\(31\)
\(=\)\(1+5+5^2\)\(+...+\)\(5^{99}\)\(.\)\(31\)chia hết cho \(31\)
BÀI 3*
a.Cho S=1/31+1/32+1/33+...+1/60 . Chứng minh rằng 3/5<S<4/5
b. Cho M =1/2^2+1/3^2+1/4^2+...+1/9^2. Chứng minh rằng 2/5<S<8/9
CÁC BẠN GIÚP MÌNH VỚI
BẠN NÀO NHANH MÌNH TICK CHO!