Cho S = 2 + 23 + 25 + ....... + 259
a) Chứng tỏ S chia hết cho 5
b) Chứng tỏ S chia hết cho 3, chia hết cho 7
c) Tính gọn S
d) Chứng minh rằng: 6 x S + 4 là 1 số chính phương
e) Tìm chữ số tận cùng của S
Mong các bạn giúp mình trước tối thứ 4 ngày 31 nha! Các bạn làm đc bao nhiêu câu thì cứ làm giúp mình nha!
a) Ta có:
\(S=2+2^3+2^5+...+2^{59}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)\)
\(S=2.\left(1+2^2\right)+2^3.\left(1+2^2\right)+...+2^{57}.\left(1+2^2\right)\)
\(S=\left(2+2^3+2^5+...+2^{57}\right).5⋮5\)
Vậy \(S⋮5\)
a) Ta có:
\(S=2+2^3+2^5+...+2^{99}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)
\(S=2\left(1+2^2\right)+2^3\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)
\(S=2.5+2^3.5+...+2^{97}.5\)
\(S=\left(2+2^3+...+2^{97}\right).5⋮5\)
\(\Rightarrow S⋮5\)
c) \(S=2+2^3+2^5+...+2^{59}\)
\(4S=2^3+2^5+2^7+...+2^{61}\)
\(4S-S=\left(2^3+2^5+2^7+...+2^{61}\right)-\left(2+2^3+2^5+...+2^{59}\right)\)\(\Rightarrow3S=2^{61}-2\)
\(\Rightarrow S=\frac{2^{61}-2}{3}\)
b) Ta có:
\(S=2+2^3+2^5+...+2^{59}\)
\(S=\left(2+2^3+2^5\right)+...+\left(2^{55}+2^{57}+2^{59}\right)\)
\(S=2\left(1+2^2+2^4\right)+...+2^{55}\left(1+2^2+2^4\right)\)
\(S=2.21+...+2^{57}.21\)
\(S=\left(2+...+2^{57}\right).21⋮3;⋮7\)
\(\Rightarrow S⋮3\) và 7