\(Gpt:2x^3+3x^2+11x-8=\left(3x+1\right)\sqrt{10x^2+2x-8}\)
\(\left(5\right)\sqrt{x+3-4\sqrt{x-1}}\sqrt{x+8+6\sqrt{x-1}}=5\)
\(\left(6\right)2x^2+3x+\sqrt{2x^2+3x+9}=33\)
\(\left(7\right)\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+30}=8\)
\(\left(8\right)x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)
Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)
Phương trình sẽ trở thành là: a^2+a-42=0
=>(a+7)(a-6)=0
=>a=-7(loại) hoặc a=6(nhận)
=>2x^2+3x+9=36
=>2x^2+3x-27=0
=>2x^2+9x-6x-27=0
=>(2x+9)(x-3)=0
=>x=3 hoặc x=-9/2
8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)
GPT: \(2\left(x-3\right)\sqrt{x^3+3x^2+x+3}+2\sqrt{x+1}=2x^3-11x^2+29x-38\)
gpt:\(\sqrt{3x^2+6x+4}+\sqrt{2x^2+4x+11}=\left(1-x\right)\left(x+3\right)\)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-x^2-2x\)
\(\sqrt{x^2-x+2}+\sqrt{x^2-3x+6}=2x\)
a) \(\sqrt{3x^2-4x-4}\) =\(\sqrt{2x+5}\)
b) \(\sqrt{\left(x-3\right)\left(8-x\right)}+26=-x^2+11x\)
ĐK: \(x\ge-\dfrac{5}{2}\)
\(\Leftrightarrow3x^2-4x-4=2x+5\)
\(\Leftrightarrow3x^2-6x-9=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (thỏa mãn)
b.
ĐKXĐ: \(3\le x\le8\)
\(\Leftrightarrow-x^2+11x-24-\sqrt{-x^2+11x-24}-2=0\)
Đặt \(\sqrt{-x^2+11x-24}=t\ge0\)
\(\Rightarrow t^2-t-2=0\Rightarrow\left[{}\begin{matrix}t=-1\left(loại\right)\\t=2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{-x^2+11x-24}=2\)
\(\Leftrightarrow-x^2+11x-28=0\Rightarrow\left[{}\begin{matrix}x=7\\x=4\end{matrix}\right.\)
a)Giải các phương trình sau bằng phương pháp đặt ẩn phụ:
1) \(x^2-3x-3=\frac{3\left(\sqrt[3]{x^3-4x^2+4}-1\right)}{1-x}\) ;2)\(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
b) Giải các phương trình sau(không giới hạn phương pháp):
1)\(2\left(1-x\right)\sqrt{x^2+2x-1}=x^2-2x-1\) ; 2)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
3)\(\frac{3x^2+3x-1}{3x+1}=\sqrt{x^2+2x-1}\) ; 4) \(\frac{2x^3+3x^2+11x-8}{3x^2+4x+1}=\sqrt{\frac{10x-8}{x+1}}\)
5)\(13x-17+4\sqrt{x+1}=6\sqrt{x-2}\left(1+2\sqrt{x+1}\right)\);
6)\(x^2+8x+2\left(x+1\right)\sqrt{x+6}=6\sqrt{x+1}\left(\sqrt{x+6}+1\right)+9\)
7)\(x^2+9x+2+4\left(x+1\right)\sqrt{x+4}=\frac{5}{2}\sqrt{x+1}\left(2+\sqrt{x+4}\right)\)
8)\(8x^2-26x-2+5\sqrt{2x^4+5x^3+2x^2+7}\)
À do nãy máy lag sr :) Chứ bài đặt ẩn phụ mệt lắm :)
giải phương trình :
a, \(\sqrt{x+1}+x+3=\sqrt{1-x}+3\sqrt{1-x^2}\)
b,\(\left(2x-3\right)\sqrt{3+x}+2x\sqrt{3-x}=6x-8+\sqrt{9-x^2}\)
c, \(2x^2-5x+22=5\sqrt{x^3-11x +20}\)
d, \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}=6x\)
GPT: \(2.\left(2x-1\right)-3.\sqrt{5x-6}=\sqrt{3x-8}\)
ĐK: x \(\ge\)\(\frac{8}{3}\)
pt <=> \(4.\left(x-3\right)+9-3.\sqrt{5x-6}=\sqrt{3x-8}-1\)
<=> \(4.\left(x-3\right)+3.\left(3-\sqrt{5x-6}\right)=\sqrt{3x-8}-1\)
<=> \(4.\left(x-3\right)+3.\frac{\left(3-\sqrt{5x-6}\right)\left(3+\sqrt{5x-6}\right)}{3+\sqrt{5x-6}}=\frac{\left(\sqrt{3x-8}-1\right)\left(\sqrt{3x-8}+1\right)}{\sqrt{3x-8}+1}\)
<=> \(4.\left(x-3\right)+3.\frac{9-5x+6}{3+\sqrt{5x-6}}=\frac{3x-8-1}{\sqrt{3x-8}+1}\)
<=> \(4.\left(x-3\right)+15.\frac{3-x}{3+\sqrt{5x-6}}-3.\frac{x-3}{\sqrt{3x-8}+1}=0\)
<=> \(\left(x-3\right)\left(4-\frac{15}{3+\sqrt{5x-6}}-\frac{3}{\sqrt{3x-8}+1}\right)=0\)
<=> x = 3 (thoả mãn) hoặc \(4-\frac{15}{3+\sqrt{5x-6}}-\frac{3}{\sqrt{3x-8}+1}=0\) (2)
Giải (2): (2) <=> \(\frac{15}{6}-\frac{15}{3+\sqrt{5x-6}}+\frac{3}{2}-\frac{3}{\sqrt{3x-8}+1}=0\)
<=> \(15\left(\frac{1}{6}-\frac{1}{3+\sqrt{5x-6}}\right)+3.\left(\frac{1}{2}-\frac{1}{\sqrt{3x-8}+1}\right)=0\)
<=> \(15.\frac{\sqrt{5x-6}-3}{6.\left(3+\sqrt{5x-6}\right)}+3.\frac{\sqrt{3x-8}-1}{2.\left(\sqrt{3x-8}+1\right)}=0\)
<=> \(15.\frac{5.\left(x-3\right)}{6.\left(3+\sqrt{5x-6}\right)^2}+3.\frac{3.\left(x-3\right)}{2.\left(\sqrt{3x-8}+1\right)^2}=0\)
<=> \(\left(x-3\right).\left(\frac{75}{6.\left(3+\sqrt{5x-6}\right)^2}+\frac{9}{2.\left(\sqrt{3x-8}+1\right)^2}\right)=0\)
<=> x = 3 Vì \(\frac{75}{6.\left(3+\sqrt{5x-6}\right)^2}+\frac{9}{2.\left(\sqrt{3x-8}+1\right)^2}>0\) với mọi x \(\ge\frac{8}{3}\)
Vậy pt có 1 nghiệm duy nhất x = 3
1) ( \(3\sqrt{50}-5\sqrt{18}+3\sqrt{8}\) ).\(\sqrt{2}\)
2. Tìm điều kiện:
1)\(\sqrt{-10x}\) 6) \(\sqrt{\dfrac{3x+21}{-5}}\)
2) \(\sqrt{6-3x}\) 7) \(\sqrt{\left(x^2+1\right).2x}\)
3) \(\dfrac{-4}{\sqrt{4x+6}}\) 8) \(\sqrt{\left(-x^2-2\right)}.3x\)
4) \(\dfrac{5}{\sqrt{2x}}\) 9) \(\sqrt{\dfrac{1}{\left(x-1\right)^2}}\)
5) \(\sqrt{\dfrac{-1}{2x-6}}\)
hộ mk với tí nx pk nộp r ;-; help
Bài 1:
Ta có: \(\left(3\sqrt{50}-5\sqrt{18}+3\sqrt{8}\right)\cdot\sqrt{2}\)
\(=\left(15\sqrt{2}-15\sqrt{2}+6\sqrt{2}\right)\cdot\sqrt{2}\)
\(=6\sqrt{2}\cdot\sqrt{2}\)
=12
Bài 2:
1) ĐKXĐ: \(x\le0\)
2) ĐKXĐ: \(x\le2\)
3) ĐKXĐ: \(x>\dfrac{-3}{2}\)
4) ĐKXĐ: x>0
5) ĐKXĐ: x<3
Mọi người ởi giả hộ em bài này đi:
1. Gpt:
a. \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)
b. \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)
c. \(2\left(3x+5\right)\sqrt{x^2+9}=3x^2+2x+30\)