(6x^3+7x^2-4x+m^2-6m+5):(2x+1)
(6x3+7x2-4x+m2-6m+5):(2x+1)
Tìm x:
1) -3.(1-2x) - 4.(1+3x) = -5x + 5
2) 3.(2x - 5) - 6.(1 - 4x) = -3x + 7
3) (1 - 3x) - 2.(3x - 6) = -4x - 5
4) x.(4x - 3) - 2x.(2x - 1) = 5x - 7
5) 3x.(2x - 1) - 6x.(x + 2) = -3x + 4
6) (1 - 2x).3 - 4.(6x - 1) = 7x - 5
7) 6x - 3.(1 - 4x) - 5.(x + 1) = 2x + 7
8) 6.(1 - 3x) - 3.(2x + 5) = -10x + 7
9) 3x.(1 - 2x) + 6x^2 - 7x = 8.(1 - 2x) - 9
10) 2x.(1 + 3x) - 3x.(4 + 2x) = 3x - 4
* Trả lời:
\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)
\(\Leftrightarrow-3+6x-4-12x=-5x+5\)
\(\Leftrightarrow6x-12x+5x=3+4+5\)
\(\Leftrightarrow x=12\)
\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)
\(\Leftrightarrow6x-15-6+24x=-3x+7\)
\(\Leftrightarrow6x+24x+3x=15+6+7\)
\(\Leftrightarrow33x=28\)
\(\Leftrightarrow x=\dfrac{28}{33}\)
\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)
\(\Leftrightarrow1-3x-6x+12=-4x-5\)
\(\Leftrightarrow-3x-6x+4x=-1-12-5\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)
\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)
\(\Leftrightarrow-x-5x=-7\)
\(\Leftrightarrow-6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\)
\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)
\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)
\(\Leftrightarrow-15x+3x=4\)
\(\Leftrightarrow-12x=4\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
3. Tìm x.
a) 4x(7x-5)-7x(4x-2)=-12
b) 3x(2x-4)-6x(x+5)=x-1
a) \(4x.\left(7x-5\right)-7x\left(4x-2\right)=-12\)
\(\Rightarrow28x^2-20x-28x^2+14x=-12\)
\(\Rightarrow x\left(14-20\right)=-12\)
\(\Rightarrow-6x=12\)
\(\Rightarrow x=-2\)
b) \(3x.\left(2x-4\right)-6x\left(x+5\right)=x-1\)
\(\Rightarrow3x.\left[\left(2x-4\right)-2.\left(x+5\right)\right]=x-1\)
\(\Rightarrow3x.\left(2x-4-2x-10\right)=x-1\)
\(\Rightarrow-42x=x-1\)
\(\Rightarrow-42x-x=-1\)
\(\Rightarrow-43x=-1\)
\(\Rightarrow x=\dfrac{1}{43}\)
a, \(4x\left(7x-5\right)-7x\left(4x-2\right)=-12\)
\(\Rightarrow28x^2-20x-28x^2+14=-12\)
\(\Rightarrow-20x=-12-14\)
\(\Rightarrow-20x=-26\Rightarrow x=1,3\)
Vậy \(x=1,3\)
b, \(3x\left(2x-4\right)-6x\left(x+5\right)=x-1\)
\(\Rightarrow6x^2-12x-6x^2-30-x=-1\)
\(\Rightarrow-13x=-1+30\)
\(\Rightarrow-13x=29\Rightarrow x=\dfrac{-29}{13}\)
Vậy \(x=\dfrac{-29}{13}\)
Chúc bạn học tốt!!!
4x(7x-5)-7x(4x-2)=-12
\(\Rightarrow\)28\(^{ }\)x^2-20x-28x^2+14x=-12
\(\Rightarrow\)-20x+14x=-12
\(\Rightarrow\)-6x=-12
\(\Rightarrow\)x=2
b, 3x(2x-4)-6x(x+5)=x-1
\(\Rightarrow\)6x^2-12x-6x^2-30x=x-1
\(\Rightarrow\)-42x=x-1
\(\Rightarrow\)-42x-x=-1
\(\Rightarrow\)-43x=-1
\(\Rightarrow\)x=1/43
tim x
-2x(6x-2)+3x(4x-7)=8
(7x-2)(2x+3)-(3x-5)(4x+6)=2x2-5
+(-2x+3)-6x(3x-4)=-22x2+7x
⇔(2 x ) 2+2.2 x .1+1 2=0 ... c ,(3 x −4) 2−14(3 x −4)(6+3 x )+49(3 x +6)=16 ... ⇔9 x 2−24 x +16−126 x 2−252 x +168 x +336+147 x +294=16.
https://olm.vn/hoi-dap/detail/192758180810.html
\(-2x\left(6x-2\right)+3x\left(4x-7\right)=8\)
<=> \(-12x^2+4x+12x^2-21x=8\)
<=> \(-17x=8\)
<=> \(x=-\frac{8}{17}\)
\(\left(7x-2\right)\left(2x+3\right)-\left(3x-5\right)\left(4x+6\right)=2x^2-5\)
<=> \(14x^2+17x-6-12x^2+2x+30=2x^2-5\)
<=> \(14x^2+17x-6-12x^2+2x+30-2x^2+5=0\)
<=> \(19x+29=0\)
<=> \(19x=-29\)
<=> \(x=-\frac{29}{19}\)
Ý cuối mình k biết -22x2 là -22.2 hay -22x2 nữa :)
tim x
-2x(6x-2)+3x(4x-7)=8
(7x-2)(2x+3)-(3x-5)(4x+6)=2x2-5
+(-2x+3)-6x(3x-4)=-22x2+7x
4x(5x − 2) 7x Ä 3x 2 − 6x + 2ä b) c) 2x(3x + 2) + (4x + 3)(2x − 1) 3x 3 y 2 : x 2 d) Ä x 3 + 4x 3 − 6x 2 ä : 4x 2 e) Ä 3x 2 − 6x ä f) : (2 − x) Ä 6x 2 + 13x − 5 ä g) : (2x + 5) Ä x 3 − 3x 2 + x − 3 ä h) : (x − 3)
Giải pt
\(1)4x^2+\sqrt{3x+1}+5=13x\)
\(2)7x^2-13x+8=2x^2.\sqrt[3]{x\left(1+3x-3x^2\right)}\)
\(3)x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(4)x^3-5x^2+4x-5=\left(1-2x\right)\sqrt[3]{6x^2-2x+7}\)
\(5)8x^2-13x+7=\left(1+\dfrac{1}{x}\right)\sqrt[3]{3x^2-2}\)
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
a)(6x^2+17x+12):(2x+3) b)(5x^2+13x-6):(5x-2) c)(-8x^2+22x-15):(2x-5) d)(14x^2-33x-5):(2x-5) e)(2x^3+7x^2+15x+6):(2x+1) f)(x^3+4x^2-11x-2):(x-2) g)(12x^3+2x^2+4x+3):(2x+1)
a: \(=\dfrac{6x^2+9x+8x+12}{2x+3}=\dfrac{3x\left(2x+3\right)+4\left(2x+3\right)}{2x+3}\)
=3x+4
b: \(=\dfrac{5x^2-2x+15x-6}{5x-2}\)
\(=\dfrac{x\left(5x-2\right)+3\left(5x-2\right)}{5x-2}=x+3\)
c: \(=\dfrac{-8x^2+20x+2x-5-10}{2x-5}=-4x+1+\dfrac{-10}{2x-5}\)
d: \(=\dfrac{14x^2-35x+2x-5}{2x-5}=\dfrac{7x\left(2x-5\right)+\left(2x-5\right)}{2x-5}\)
=7x+1
e: \(=\dfrac{2x^3+x^2+6x^2+3x+12x+6}{2x+1}\)
\(=\dfrac{x^2\left(2x+1\right)+3x\left(2x+1\right)+6\left(2x+1\right)}{2x+1}=x^2+3x+6\)
f: \(=\dfrac{x^3-2x^2+6x^2-12x+x-2}{x-2}=x^2+6x+1\)
g: \(=\dfrac{12x^3+6x^2-4x^2-2x+6x+3}{2x+1}=6x^2-2x+3\)
Phân tích đa thức thành nhân tử:
1, x^3-x+y^3-4
2, 4x^2-y^2+4x+1
3, x^4+2x^3+x^2
4, x^2+5x-6
5, 7x-6x^2-2
6, 5x^2+5xy-x-y
7, 2x^2+3x-5
8,x^4-5x^2+4
9, x^3-5x^2+45-9x
10, x^4-2x^3-2x^2-2x-3
11, 81x^4+4
12,x^5+x+1
13, x^4+6x^3+7x^2-6x+1
14, x(x+4)(x+6)(x+10)+128
2: =(2x+1)^2-y^2
=(2x+1+y)(2x+1-y)
3: =x^2(x^2+2x+1)
=x^2(x+1)^2
4: =x^2+6x-x-6
=(x+6)(x-1)
5: =-6x^2+3x+4x-2
=-3x(2x-1)+2(2x-1)
=(2x-1)(-3x+2)
6: =5x(x+y)-(x+y)
=(x+y)(5x-1)
7: =2x^2+5x-2x-5
=(2x+5)(x-1)
8: =(x^2-1)*(x^2-4)
=(x-1)(x+1)(x-2)(x+2)
9: =x^2(x-5)-9(x-5)
=(x-5)(x-3)(x+3)