Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 5 2019 lúc 6:09

1). Tam giác ABF và tam giác ACE ần lượt cân tại F, E 

F B A ^ = E C A ^ = A ^ 2 ⇒ Δ A B F ∽ Δ A C E .

2). Giả sử G là giao điểm của BE  CF.

Ta có  G F G C = B F C E = A B A C = D B D C ⇒ G D ∥ F B   , và  F B ∥ A D  ta có  G ∈ A D .

3). Chứng minh  B Q G ^ = Q G A ^ = G A E ^ = G A C ^ + C A E ^ = G A B ^ + B A F ^ = G A F ^ , nên AGQF nội tiếp, và Q P G ^ = G C E ^ = G F Q ^ , suy ra tứ giác FQGP nội tiếp.

Kaarthik001
26 tháng 1 lúc 18:36

1) Chứng minh rằng tam giác \( A B F \) đồng dạng với tam giác \( A C E \):

- Tam giác \(ABF\) và \(ACE\) có:
  + Góc \(A\) chung.
  + Góc \(BAF\) bằng góc \(CAE\) (vì \(AD\) là phân giác của góc \(BAC\) và \(CF\), \(BE\) song song với \(AD\)).
  
  Do đó, tam giác \(ABF\) đồng dạng với tam giác \(ACE\) (theo trường hợp góc-góc).

2) Chứng minh rằng các đường thẳng \(BE\), \(CF\), \(AD\) đồng quy:

- Gọi \(G\) là giao điểm của \(BE\) và \(CF\).
- \(AD\) là phân giác góc \(BAC\), và \(BE\), \(CF\) song song với \(AD\). Do đó, \(G\) cũng nằm trên phân giác \(AD\).
- Vậy \(BE\), \(CF\), \(AD\) đồng quy tại \(G\).

3) Chứng minh rằng các điểm \(A\), \(P\), \(G\), \(Q\), \(F\) cùng thuộc một đường tròn:

- Gọi đường tròn ngoại tiếp tam giác \(GEC\) là \(\omega\).
- \(QE\) cắt \(\omega\) tại \(P\) khác \(E\), vậy \(P\) nằm trên đường tròn \(\omega\).
- \(GQ\) song song với \(AE\), và \(AE\) là đường kính của \(\omega\) (vì \(E\) là trung điểm của \(AC\) và \(G\) nằm trên phân giác của \(BAC\)). Do đó, \(GQ\) là dây cung của \(\omega\).
- \(PF\) là tiếp tuyến của \(\omega\) tại \(P\) (vì \(QE\) là tiếp tuyến và \(PF\) là phần kéo dài của \(QE\)).
- Góc \(PGF\) bằng góc \(GAC\) (cùng chắn cung \(GC\) của \(\omega\)).
- \(AF\) là trung trực của \(AB\), nên \(ABF\) là tam giác cân tại \(A\). Do đó, góc \(AFB\) bằng góc \(ABF\).
- Góc \(ABF\) bằng góc \(GAC\) (do đồng dạng của tam giác \(ABF\) và \(ACE\)).
- Vậy, góc \(PGF\) bằng góc \(AFB\). Do đó, \(A\), \(P\), \(G\), \(Q\), \(F\) cùng thuộc một đường tròn.

nguyễn quỳnh lưu
Xem chi tiết
Nguyễn Tất Đạt
5 tháng 9 2019 lúc 12:43

A B C G F E D Q P

a) Ta dễ thấy ^ABF = ^BAF = ^BAD = ^CAD = ^ACE = ^CAE. Suy ra \(\Delta\)ABF ~ \(\Delta\)ACE (g.g) (đpcm).

b) Gọi BE cắt CF tại G. Áp dụng hệ quả ĐL Thales, kết hợp với \(\Delta\)ABF ~ \(\Delta\)ACE ta có:

\(\frac{GC}{GF}=\frac{CE}{FB}=\frac{AC}{AB}\). Mà \(\frac{AC}{AB}=\frac{DC}{DB}\)(ĐL đường phân giác trong tam giác) nên \(\frac{GC}{GF}=\frac{DC}{DB}\)

Do đó GD // BF // CE (ĐL Thales đảo). Lại có AD // BF // CE nên A,G,D thẳng hàng

Vậy thì AD,BE,CF cắt nhau tại G (đpcm).

c) Chú ý GQ // AE suy ra ^AGQ = ^GAE = ^GAF, đồng thời có AG // QF. Suy ra AFQG là hình thang cân (1)

Mặt khác BF // CE dẫn đến ^GFQ = ^GCE = ^GPQ. Từ đây bốn điểm P,Q,F,G cùng thuộc một đường tròn (2)

Từ (1) và (2) suy ra các điểm A,P,G,Q,F cùng thuộc một đường tròn (đpcm).

Nguyễn đình bảo
Xem chi tiết
Đặng Thị Ngọc Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 2 2018 lúc 11:14

2) Theo 1). dễ thấy Δ B F A ∽ Δ B N P ⇒ Δ B N F ∽ Δ B P A ⇒ B N B P = F N A P (1).

Tương tự Δ C M E ∽ Δ C P A ⇒ C M C P = E M A P  (2).

Từ (1) và (2), ta có B N C M ⋅ C P B P = F N E M và theo giả thiết F N E M = B N C M , suy ra   C P = B P ⇒ A D là phân giác góc B A C ^ .

Ninh Đức Nam
Xem chi tiết
Nguoi Viet Nam
Xem chi tiết
Trúc Giang
27 tháng 1 2021 lúc 21:34

undefined

Văn Quyết
Xem chi tiết
Phương Ann
6 tháng 5 2018 lúc 11:17

a) Chứng minh ΔABF ~ ΔACE

\(\odot\) Ta có: FA = FB (F ∈ đường trung trực của AB)

⇒ ΔFAB cân tại F

Tương tự, ta cũng có ΔEAC cân tại E

\(\odot\) Mặt khác:

\(\widehat{FBA}=\widehat{BAD}\) (AD // BF, 2 góc so le trong)

\(\widehat{BAD}=\widehat{CAD}\) (AD là tia phân giác của \(\widehat{BAC}\))

\(\widehat{CAD}=\widehat{ECA}\) (AD // CE, 2 góc so le trong)

\(\Rightarrow\widehat{FBA}=\widehat{ECA}\)

\(\odot\) Suy ra ​ΔFAB cân tại F và ΔEAC cân tại E có \(\widehat{FBA}=\widehat{ECA}\)

⇒ ΔFAB ~ ΔEAC

b) Chứng minh AD, BE, CF đồng quy

\(\odot\) Gọi G là giao điểm của BE và CF. Ta sẽ chứng minh A, G, D thẳng hàng.

\(\odot\) Theo định lí Thales: BF // EC (do cùng song song với AD)

\(\Rightarrow\dfrac{FG}{GC}=\dfrac{BF}{CE}\)

\(\odot\) Mà:

\(\dfrac{BF}{CE}=\dfrac{AB}{AC}\) (ΔFAB ~ ΔEAC)

\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\) (AD là đường phân giác của ΔABC)

\(\odot\) Suy ra \(\dfrac{FG}{GC}=\dfrac{BD}{CD}\)

Theo định lí Thales đảo ⇒ GD // BF

mà AD // BF (gt) nên \(AD\equiv GD\)

⇒ A, G, D thẳng hàng

⇒ đpcm

c) Chứng minh A, P, G, Q, F đồng viên

\(\odot\) Ta có: \(\widehat{FAG}=\widehat{EAG}\)

\(\widehat{EAG}=\widehat{QGA}\) (2 góc so le trong, QG // AE)

\(\Rightarrow\widehat{FAG}=\widehat{QGA}\)

mà FAGQ là hình thang

⇒ FAGQ là hình thang cân

⇒ FAGQ nội tiếp (1)

\(\odot\) Mặt khác: ECGP nội tiếp

\(\Rightarrow\widehat{CEP}=\widehat{PGF}\) (cùng bù \(\widehat{PGC}\))

\(\widehat{CEP}=\widehat{FQP}\) (2 góc so le trong, BF // CE)

\(\Rightarrow\widehat{PGF}=\widehat{FQP}\)

⇒ FQGP nội tiếp (2)

\(\odot\) Từ (1) và (2) ⇒ Ngũ giác AFQGP nội tiếp

⇒ đpcm

Minh Võ
Xem chi tiết