2 . ( \(\frac{1}{9.10}\)+ \(\frac{1}{10.11}\)+\(\frac{1}{11.12}\)+..............+\(\frac{1}{x.\left(x+1\right)}\)) = \(\frac{1}{9}\)
Tìm x biết: \(x.\left(\frac{2015}{8.9}+\frac{1925}{9.10}+\frac{1795}{10.11}+\frac{1629}{11.12}+6\right)=\frac{1}{24}\)
Bài 1.Tìm x, biết:
\(2.\left(\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1}{9}\)
\(\left|x\right|-\frac{3}{4}=\frac{5}{3}\)
Bài 2. Lớp 6A có một số HS biết số HSG là 8 HS. Số HS trung bình = \(\frac{3}{10}\)số học sinh cả lớp. Tính số HS khá của lớp 6A
\(2\left(\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1}{9}\)
\(\Leftrightarrow2\left(\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1}{9}\)
\(\Leftrightarrow2\left(\frac{1}{9}-\frac{1}{x+1}\right)=\frac{1}{9}\)
\(\Leftrightarrow\frac{1}{9}-\frac{1}{x+1}=\frac{1}{9}\div2\)
\(\Leftrightarrow\frac{1}{9}-\frac{1}{x+1}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{9}-\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{18}\)
\(\Leftrightarrow x+1=18\)
\(\Leftrightarrow x=18-1\)
\(\Leftrightarrow x=17\)
\(\left|x\right|-\frac{3}{4}=\frac{5}{3}\)
\(\Leftrightarrow\left|x\right|=\frac{5}{3}+\frac{3}{4}\)
\(\Leftrightarrow\left|x\right|=\frac{20}{12}+\frac{9}{12}\)
\(\Leftrightarrow\left|x\right|=\frac{29}{12}\)
\(\Leftrightarrow x=\pm\frac{29}{12}\)
Bài 1 :
\(2.\left(\frac{1}{9.10}+\frac{1}{10.11}+...+\frac{1}{x.\left(x+1\right)}\right)\)= \(\frac{1}{9}\)
=> \(\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+1}\)= \(\frac{1}{18}\)
\(\frac{1}{9}-\frac{1}{x+1}=\frac{1}{18}\)
\(\frac{1}{x+1}=\frac{1}{18}\)
=> x + 1 = 18
=> x = 17
vậy x = 17
A=\(\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}\)
B=\(\frac{1}{20}+\frac{-1}{30}+\frac{1}{40}+\frac{-1}{50}+\frac{1}{60}+\frac{-1}{70}+\frac{1}{80}+\frac{1}{70}+\frac{-1}{60}+\frac{1}{50}+\frac{-1}{40}+\frac{1}{30}+\frac{-1}{20}\)
giúp mình giải các bài toán này nha mình đang càn gấp cảm ơn các bạn nhiều
A=\(\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{13}-\frac{1}{14}\)=\(\frac{1}{7}-\frac{1}{14}\)=\(\frac{1}{14}\)
B=0
\(\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}\)
\(=\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{14}\)
\(=\frac{1}{7}-\frac{1}{14}=\frac{1}{14}\)
A=\(\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}\)
A=\(\left(\frac{1}{7}-\frac{1}{8}\right).\left(\frac{1}{8}-\frac{1}{9}\right).\left(\frac{1}{9}-\frac{1}{10}\right).\left(\frac{1}{10}-\frac{1}{11}\right).\left(\frac{1}{11}-\frac{1}{12}\right).\left(\frac{1}{12}-\frac{1}{13}\right).\left(\frac{1}{13}-\frac{1}{14}\right)\)
A=\(\frac{1}{7}-\frac{1}{14}\)
A=\(\frac{1}{14}\)
1, Tìm X
\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right).100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\)
\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\right)\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \left(1-\frac{1}{10}\right)\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \frac{9}{10}\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ 90-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=1\\ \frac{5}{2}:\left(X+\frac{206}{100}\right)=\frac{1}{2}\\ X+\frac{206}{100}=5\\ X=\frac{500}{100}-\frac{206}{100}\\ X=\frac{294}{100}=\frac{147}{50}\)
Vậy \(X=\frac{147}{50}\)
( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ......+ 1/9 - 1/10) . 100 - [ 5/2 : ( x + 103/50 ) ] = 89 . 1/2
( 1 - 1/10) . 100 - [ 5/2 : ( x + 103/50 ) ] = 89/2
90 - 5/2 : ( x + 103/50 ) = 89/2
5/2 : ( x + 103/50 ) = 90 - 89/2
5/2 : ( x + 103/50 ) = 91/2
x + 103/50 = 5/2 : 91/2
x + 103/50 = 5/91
x = 5/91 - 103/50
x = -9,123/4550
Tìm x biết: \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right).\left(x-1\right)=x-\frac{1}{3}\)
\(\text{Đề }\Leftrightarrow\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right).\left(x-1\right)=x-\frac{1}{3}\)
=> \(\left(1-\frac{1}{10}\right).\left(x-1\right)=x-\frac{1}{3}\)
=> \(\frac{9}{10}.\left(x-1\right)=x-\frac{1}{3}\)
=> \(\frac{9x}{10}-\frac{9}{10}=\frac{3x-1}{3}\)
=> \(\frac{27x}{30}-\frac{27}{30}=\frac{10.\left(3x-1\right)}{30}\)
=> 27x - 27 = 30x - 10
=> 27x - 30x = -10 + 27
=> -3x = 17
=> x = -17/3.
TÌm x: ( 1.2.3 + 2.3.4 + ... + 20.21.22 ) - 5 - 7 - 9 - ... - 55 - 3x = \(\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\right)-\frac{5}{1.3}-\frac{5}{3.5}-...-\frac{5}{53.55}-\) 8.9 - 9.10 - ... - 20.21
\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
\(\frac{x+2}{x+1}-\frac{1}{x-2}=1-\frac{3}{x^2-x-2}\)
\(\frac{1}{x}+2=\left(\frac{1}{x}+2\right)\left(x^2+1\right)\)
\(\left(x+1+\frac{1}{x}\right)^2=\left(x-1-\frac{1}{x}\right)^2\)
\(\frac{x+9}{10}+\frac{x+10}{9}=\frac{9}{x+10}+\frac{10}{x+9}\)
\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\left(x\ne1\right)\)
\(\Leftrightarrow\frac{1}{x-1}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x}{x^2+x+1}=0\)
\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{1}{\left(x-1\right)\left(x^2+x+1\right)}\left(x^2+x+1-3x^2-2x^2+2x\right)=0\)
\(\Leftrightarrow-4x^2+3x+1=0\left(\frac{1}{\left(x-1\right)\left(x^2+x+1\right)}\ne0\right)\)
\(\Leftrightarrow-4x^2+4x-x+1=0\)
\(\Leftrightarrow-4x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-4x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\-4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\-4x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\left(loại\right)\\x=\frac{-1}{4}\end{cases}}}\)
Vậy \(x=\frac{-1}{4}\)
Tunh:
\(\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+...+\frac{1}{210.211}+\frac{1}{211.212}\)
Help me ~~~
ko ghi lại đề
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{210}-\frac{1}{211}+\frac{1}{211}-\frac{1}{212}\)
\(=1-\frac{1}{212}\)
\(=\frac{211}{212}\)
\(\frac{1}{8.9}+\frac{1}{9.10}+...+\frac{1}{211.212}\)
= \(\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+...+\frac{1}{211}-\frac{1}{212}\)
= \(\frac{1}{8}-\frac{1}{212}\)
= \(\frac{51}{424}\)
\(\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+...+\frac{1}{210.211}+\frac{1}{211.212}\)
=\(\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+...+\frac{1}{210}-\frac{1}{211}+\frac{1}{211}-\frac{1}{212}\)
=\(\frac{1}{8}-\frac{1}{212}\)=\(\frac{53}{424}-\frac{2}{424}=\frac{51}{424}\)\(\approx0,12028\approx0,12\)
\(A=\left(6:\frac{3}{5}-1\frac{1}{6}x\frac{6}{7}\right):\left(4\frac{1}{5}x\frac{10}{11}+5\frac{2}{11}\right)\)\(B=\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{4}\right)x.......x\left(1-\frac{1}{2015}\right)x\left(1-\frac{1}{2016}\right)\)
\(C=5\frac{9}{10}:\frac{3}{2}-\left(2\frac{1}{3}x4\frac{1}{2}-2x2\frac{1}{3}\right):\frac{7}{4}\)