Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hatake Kakashi
Xem chi tiết
Thi Trương
Xem chi tiết
Minh Triều
23 tháng 5 2015 lúc 7:15

a)ta có I là trung điểm của AC ( gt)

          I là trung điểm của MK(K dối xứng với M qua I)

=>AMCK là hình bình hành 

xét tam giác ABC cân tại A có 

AM là trung tuyến của tam giác ABC

=>AM cũng là đường cao của tam giác ABC

=>góc AMC =900

mà AMCK là hình bình hành =>AMCK là hình chữ nhật

b)ta có :KA=CM(AMCK là hình chữ nhật)

mà CM=MB nên KA=MB

Xét tam giác AMK vuông tại A và tam giác MAB vuông tại M

AM : cạnh chung

KA=MB(chứng minh trên)

Suy ra tam giác AMK=tam giác MAB(cgv-cgv)

=>góc AMK=góc BAM (2 góc tương ứng )

Mà hai góc này ở vị trí so le trong nên:

AB song song MK

ta lại có AB=KM(tam giác AMK=tam giác MAB)

=>AKMB là hình bình hành

c)ta có AMCK là hình vuông 

=>AM=CM

mà CM=BM(AM là trung tuyến của tam giác ABC)

nên AM=\(\frac{CM+BM}{2}+\frac{BC}{2}\)

=>tam giác ABC vuông cân tại A

Vậy tam giác ABC cần có thêm điều kiện là cân tại A thì AMCK là hình vuông

 

lã văn thức
28 tháng 10 2017 lúc 10:05

chứng minh tứ giác là hình thoi đi các bạn ^_^

fdjndjndkf52
19 tháng 12 2017 lúc 12:59

hiếu đz

12 Nguyễn Chí Công
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 12 2021 lúc 14:45

a: Xét tứ giác AEBM có

D là trung điểm của AB

D là trung điểm của EM

Do đó: AEBM là hình bình hành

mà MA=MB

nên AEBM là hình thoi

Chu Hiền
Xem chi tiết
Nguyễn Phương Uyên
11 tháng 3 2020 lúc 12:13

A B C N M G E F I

a, xét tứ giác BICG có : 

M là trung điểm cuả BC do AM là trung tuyến (gt)

M là trung điểm của GI do I đx G qua M (gt)

=> BICG là hình bình hành (dh)

+ G là trọng tâm của tam giác ABC (gt)

=> GM = AG/2 và  GN = BG/2 (đl)

E; F lần lượt là trung điểm của  GB; GA (gt) => FG = AG/2 và GE = BG/2 (tc)

=> FG = GM và GN = GE 

=> G là trung điểm của FM và EN 

=> MNFE là hình bình hành (dh)

b, MNFE là hình bình hành (câu a)  

để MNFE là hình chữ nhật

<=> NE = FM 

có : NE = 2/3BN và FM = 2/3AM

<=> AM = BN  mà AM và BN là trung tuyến của tam giác ABC (Gt)

<=>  tam giác ABC cân tại C (đl)

c, khi BICG là hình thoi 

=> BG = CG 

BG và AG là trung tuyến => CG là trung tuyến

=> tam giác ABC cân tại A 

Khách vãng lai đã xóa
nguyen thi kha hoa
Xem chi tiết
Kiều Vũ Linh
3 tháng 1 lúc 10:26

a) \(\Delta ABC\) cân tại A, có AM là đường trung tuyến

\(\Rightarrow AM\) cũng là đường trung trực của \(\Delta ABC\)

\(\Rightarrow AM\perp BC\)

\(\Rightarrow\widehat{AMC}=90^0\)

Tứ giác \(AMCN\) có:

\(I\) là trung điểm của AC (gt)

\(I\) là trung điểm của MN (gt)

\(\Rightarrow AMCN\) là hình bình hành

Mà \(\widehat{AMC}=90^0\)

\(\Rightarrow AMCN\) là hình chữ nhật

b) Do \(AMCN\) là hình chữ nhật

\(\Rightarrow AN=CM\) và \(AN\) // \(CM\)

Do \(AN\) // \(CM\) (cmt)

\(\Rightarrow AN\) // \(BM\)

Do \(M\) là trung điểm của \(BC\) (gt)

\(\Rightarrow BM=CM\)

Mà \(AN=CM\left(cmt\right)\)

\(\Rightarrow BM=AN\)

Tứ giác \(ABMN\) có:

\(BM\) // \(AN\) (cmt)

\(BM=AN\left(cmt\right)\)

\(\Rightarrow ABMN\) là hình bình hành

Mà \(E\) là trung điểm của AM

\(\Rightarrow E\) là trung điểm của BN

Nguyễn Thảo Nhi
3 tháng 1 lúc 9:34

a

Ánh Tuyết
Xem chi tiết
Nam Quốc
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 12 2021 lúc 14:48

a: Xét tứ giác AEBM có 

D là trung điểm của AB

D là trung điểm của EM

Do đó: AEBM là hình bình hành

mà MA=MB

nên AEBM là hình thoi

kudo shinichi
Xem chi tiết
Hoa Lan Mầm non
Xem chi tiết