CMR biểu thức luôn luôn dương với mọi x,y: A= x(x-6)+10
B=x^2-2x+9y^2-6y+3
cho biểu thức
\(Q=x^2+6y^2-2xy-12x+2y+2017\)
chứng minh rằng biểu thức Q luôn nhận giá trị dương với mọi số thực x, y
Ta có \(Q=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+1976\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\ge0\)
=>Q luôn nhận giá trị dương với mọi x,y (ĐPCM)
^_^
\(Q=x^2+6y^2-2xy-12x+2y+2017\)
\(Q=\left(x^2-2xy+y^2\right)-2\left(x-y\right)6+36+5y^2-10x+5+1976\)
\(Q=\left(x-y\right)^2-12\left(x-y\right)+64+5\left(y^2-2y+1\right)+1976\)
\(Q=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\)
Mà, \(\left(x-y-6\right)^2,5\left(y-1\right)^2\ge0\)
\(\Rightarrow Q>0\)
\(Q=x^2+6y^2-2xy-12x+2y+2017\)
\(Q=\left(x^2-2xy+y^2\right)-12x+12y-10y+5y^2+2017\)
\(Q=\left(x-y\right)^2-2.6\left(x-y\right)+36+\left(5y^2-10y+5\right)+1976\)
\(Q=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\)
Vì\(\left(x-y-6\right)^2;5\left(y-1\right)^2\ge0\)
\(Q>0\forall x;y\in R\)(đpcm)
Cho biểu thức A=\(\dfrac{1}{x-1}\)+\(\dfrac{3x^2}{1-x^3}\)+\(\dfrac{2x}{x^2+x+1}\)với x≠1
a) Rút gọn biểu thức A
b)Chứng minh với mọi x≠1 thì biểu thức A luôn nhận giá trị âm
a, Với x khác 1
\(A=\dfrac{x^2+x+1-3x^2+2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}=-\dfrac{1}{x^2+x+1}\)
b, Ta có \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\Rightarrow\dfrac{-1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< 0\)
Vậy với x khác 1 thì bth A luôn nhận gtri âm
chứng minh :
A = x(x - 6) +10 luôn luôn dương với mọi x
B = x2 - 2x + 9y2 - 6y + 3 luôn luôn dương với mọi x,y
Giải:
a) Ta có:
\(A=x\left(x-6\right)+10\)
\(\Leftrightarrow A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-6x+9+1\)
\(\Leftrightarrow A=\left(x^2-6x+9\right)+1\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\)
Vì \(\left(x-3\right)^2\ge0;\forall x\)
\(\left(x-3\right)^2+1\ge1;\forall x\)
Hay \(A\ge1;\forall x\)
\(\Leftrightarrow A>0;\forall x\)
Vậy A luôn luôn nhận giá trị dương với mọi x.
b) Ta có:
\(B=x^2-2x+9y^2-6y+3\)
\(B=x^2-2x+9y^2-6y+1+1+1\)
\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\)
Vì \(\left(x-1\right)^2\ge0;\forall x\) và \(\left(3y-1\right)^2\ge0;\forall y\)
\(\Leftrightarrow\left(x-1\right)^2+\left(3y-1\right)^2\ge0;\forall x,y\)
\(\Leftrightarrow\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1;\forall x,y\)
Hay \(B\ge1;\forall x,y\)
\(\Leftrightarrow B>0;\forall x,y\)
Vậy B luôn luôn nhận giá trị dương với mọi x, y.
A = x(x - 6) + 10
= x2 - 6x + 10
= x2 - 6x + 9 + 1
= (x2 - 6x + 9) + 1
= (x - 3)2 + 1
Vì (x - 3)2 \(\ge\) 0 với mọi x
=> (x - 3)2 + 1 > 0 với mọi x
Vậy A = = x(x - 6) + 10 luôn dương với mọi x
B = x2 - 2x + 9y2 - 6y + 3
= (x2 - 2x + 1) + (9y2 - 6y + 1) + 1
= (x - 1)2 + (3y - 1)2 +1
Vì (x - 1)2 \(\ge\) 0 với mọi x
(3y - 1)2 \(\ge\) 0 với mọi y
=> (x - 1)2 + (3y - 1)2 \(\ge\) 0 với mọi x, y
=> (x - 1)2 + (3y - 1)2 +1 > 0 với mọi x, y
Vậy B = x2 - 2x + 9y2 - 6y + 3 luôn dương với mọi x, y
Chúc bạn học tốt!
CMR biểu thức sau luôn có giá trị dương với mọi x
B=2x2 +2x+1
B= 2(x2+x+1/2)
= 2(x2+2x1/2+(1/2)2-(1/2)2+1/2)
= 2[(x+1/2)2+1/4) lớn hơn hoặc bằng 1/2 với mọi x
do đó B lớn hơn 0 với mọi x
\(B=2x^2+2x+1\)
\(B=2\left(x^2+x+\frac{1}{2}\right)\)(Đặt nhân tử chung)
\(B=2\left[x^2+2.\frac{1}{2}x+\left(\frac{1}{2}\right)^2+\frac{1}{2}-\left(\frac{1}{2}\right)^2\right]\)(Thêm bớt hạng tử)
\(B=2\left\{\left[x^2+2.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]+\left(\frac{1}{2}-\frac{1}{4}\right)\right\}\)(Nhóm hạng tử)
\(B=2\left[\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\right]\)(Dùng hằng đẳng thức)
\(B=2\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\)(Phá ngoặc)
Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\)với mọi \(x\)
\(\Leftrightarrow2\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
\(\Leftrightarrow2\left(x+\frac{1}{2}\right)^2+\frac{1}{4}>0\)với mọi \(x\)
\(\Leftrightarrow B>0\)
Vậy biểu thức \(B\) luôn dương với mọi \(x\)
Chướng minh các biểu thức :
A=x(x-6)+10 luôn dương với mọi x
B= x^2-2x+9y^2-6y+3 luôn dương với mọi x,y
A = x(x - 6) + 10
A = x^2 - 6x + 9 + 1
A = (x - 3)^2 + 1 > 1
B = x^2 - 2x + 9y^2 - 6y + 3
B = (x^2 - 2x + 1) + (9y^2 - 6y + 1) + 1
B = (x - 1)^2 + (3y - 1)^2 + 1 > 1
A=x(x-6)+10
Cm bt trên luôn luôn dương với mọi x
B=x^2-2x+9y^2-6y+3
Cm bt trên luôn luôn dương với mọi x,y
Câu 2:
a,x(x−6)+10x(x−6)+10
= x2−6x+10x2−6x+10
=(x−3)2+1>0(x−3)2+1>0\forall x
b, x2−2x+9y2−6y+3x2−2x+9y2−6y+3
= (x2−2x+1)+(9y2−6y+1)+1(x2−2x+1)+(9y2−6y+1)+1
=(x−1)2+(3y−1)2+1>0(x−1)2+(3y−1)2+1>0
kkkkkkkk cho mình nha
A=x^2-6x+10=x^2-6x+9+1=(x-3)^2+1
Co (x-3)^2>=0 1>0
=>A>0 voi moi x
Cho A=2x2-5x;B=-x2+x+3;C=2x-2
Chứng minh rằng tring 3 biểu thức điA,B,C có ít nhất một biểu thức luôn có giá trị không âm với mọi giá trị của x
Cho biểu thức B=\(\frac{x}{x-1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{^{x^3+1}}\)
a)Rút gọn biểu thức B
b)Chứng minh B luôn dương với mọi x khác 0
chứng minh biểu thức A=x(x-6)+10 luôn dương với mọi x
B=x^2 -2x+9y^2-6y+3 luôn dương với mọi x,y