Ôn tập: Phân thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thiện Nhân

chứng minh :

A = x(x - 6) +10 luôn luôn dương với mọi x

B = x2 - 2x + 9y2 - 6y + 3 luôn luôn dương với mọi x,y

Giang
25 tháng 12 2017 lúc 19:24

Giải:

a) Ta có:

\(A=x\left(x-6\right)+10\)

\(\Leftrightarrow A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-6x+9+1\)

\(\Leftrightarrow A=\left(x^2-6x+9\right)+1\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\)

\(\left(x-3\right)^2\ge0;\forall x\)

\(\left(x-3\right)^2+1\ge1;\forall x\)

Hay \(A\ge1;\forall x\)

\(\Leftrightarrow A>0;\forall x\)

Vậy A luôn luôn nhận giá trị dương với mọi x.

b) Ta có:

\(B=x^2-2x+9y^2-6y+3\)

\(B=x^2-2x+9y^2-6y+1+1+1\)

\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\)

\(\left(x-1\right)^2\ge0;\forall x\)\(\left(3y-1\right)^2\ge0;\forall y\)

\(\Leftrightarrow\left(x-1\right)^2+\left(3y-1\right)^2\ge0;\forall x,y\)

\(\Leftrightarrow\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1;\forall x,y\)

Hay \(B\ge1;\forall x,y\)

\(\Leftrightarrow B>0;\forall x,y\)

Vậy B luôn luôn nhận giá trị dương với mọi x, y.

Trần Phan Thanh Thảo
25 tháng 12 2017 lúc 19:22

A = x(x - 6) + 10

= x2 - 6x + 10

= x2 - 6x + 9 + 1

= (x2 - 6x + 9) + 1

= (x - 3)2 + 1

Vì (x - 3)2 \(\ge\) 0 với mọi x

=> (x - 3)2 + 1 > 0 với mọi x

Vậy A = = x(x - 6) + 10 luôn dương với mọi x

B = x2 - 2x + 9y2 - 6y + 3

= (x2 - 2x + 1) + (9y2 - 6y + 1) + 1

= (x - 1)2 + (3y - 1)2 +1

Vì (x - 1)2 \(\ge\) 0 với mọi x

(3y - 1)2 \(\ge\) 0 với mọi y

=> (x - 1)2 + (3y - 1)2 \(\ge\) 0 với mọi x, y

=> (x - 1)2 + (3y - 1)2 +1 > 0 với mọi x, y

Vậy B = x2 - 2x + 9y2 - 6y + 3 luôn dương với mọi x, y

Chúc bạn học tốt!


Các câu hỏi tương tự
trang
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lý Vũ Thị
Xem chi tiết
Dương My Yến
Xem chi tiết
Khánh Trần
Xem chi tiết
Đặng Quỳnh Như
Xem chi tiết
Huỳnh Thị Thu Hằng
Xem chi tiết
Huỳnh ngọc anh thư
Xem chi tiết
Minh Vu
Xem chi tiết