Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Thị Dịu Hiền
Xem chi tiết
βєsէ Ňαkɾσtɦ
Xem chi tiết
Kiệt Nguyễn
19 tháng 7 2019 lúc 9:00

\(\sqrt{27}-\sqrt{12}-\sqrt{2016}>\sqrt{25}-\sqrt{16}-\sqrt{2025}\)

\(=5-4-45=-44\)

Vậy \(\sqrt{27}-\sqrt{12}-\sqrt{2016}>-44\)

Cá Chép Nhỏ
19 tháng 7 2019 lúc 9:04

Có : \(\sqrt{12}< \sqrt{16}=4\)

         \(\sqrt{2016}< \sqrt{2025}\)         => \(\sqrt{12}+\sqrt{2016}< 4+45\)

                                                                 => \(-\sqrt{12}-\sqrt{2016}>-49\)(1)

Lại có : \(\sqrt{27}>\sqrt{25}=5\)(2)

Từ (1),(2) có : \(\sqrt{27}-\sqrt{12}-\sqrt{2016}>5-49\)or \(\sqrt{27}-\sqrt{12}-\sqrt{2016}>-44\)

AK-47
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 9 2023 lúc 21:40

\(\sqrt{2017}-\sqrt{2016}=\dfrac{1}{\sqrt{2017}+\sqrt{2016}}\)

\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)

2017>2015

=>căn 2017>căn 2015

=>\(\sqrt{2017}+\sqrt{2016}>\sqrt{2016}+\sqrt{2015}\)

=>\(\dfrac{1}{\sqrt{2017}+\sqrt{2016}}< \dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)

=>\(\sqrt{2017}-\sqrt{2016}< \sqrt{2016}-\sqrt{2015}\)

Minh Triều
Xem chi tiết
Edogawa Conan
30 tháng 12 2015 lúc 15:01

tick đi sau làm cho

t

Minh Triều
30 tháng 12 2015 lúc 15:02

Big hero 6 đáp án là > mà Mài hả bưởi

VŨ ĐỨC TÂM
30 tháng 12 2015 lúc 15:04

Không biết !

Dun Con
Xem chi tiết
Đặng Tuấn Anh
15 tháng 6 2018 lúc 21:30

\(\frac{2016}{\sqrt{2016}}=\sqrt{2016}\)

\(\frac{2017}{\sqrt{2017}}=\sqrt{2017}\)

=> Bằng nhau

Đinh quang hiệp
16 tháng 6 2018 lúc 8:36

\(\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}-\sqrt{2016}-\sqrt{2017}=\left(\frac{2016}{\sqrt{2017}}-\sqrt{2017}\right)+\left(\frac{2017}{\sqrt{2016}}-\sqrt{2016}\right)\)

\(=\frac{2016-2017}{\sqrt{2017}}+\frac{2017-2016}{\sqrt{2016}}=\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}\)

vì \(2016< 2017\Rightarrow\sqrt{2016}< \sqrt{2017}\Rightarrow\frac{1}{\sqrt{2016}}>\frac{1}{\sqrt{2017}}\Rightarrow\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}>0\)

\(\Rightarrow\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}-\sqrt{2016}-\sqrt{2017}>0\Rightarrow\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}>\sqrt{2016}+\sqrt{2017}\)

Anna Taylor
Xem chi tiết
alibaba nguyễn
15 tháng 10 2019 lúc 15:30

Ta có:

\(\sqrt{2016}-\sqrt{2017}=\frac{\left(\sqrt{2016}-\sqrt{2017}\right)\left(\sqrt{2016}+\sqrt{2017}\right)}{\sqrt{2016}+\sqrt{2017}}\)

\(=\frac{2016-2017}{\sqrt{2016}+\sqrt{2017}}=-\frac{1}{\sqrt{2016}+\sqrt{2017}}\)

\(\sqrt{2017}-\sqrt{2018}=\frac{\left(\sqrt{2017}-\sqrt{2018}\right)\left(\sqrt{2017}+\sqrt{2018}\right)}{\sqrt{2017}+\sqrt{2018}}\)

\(=\frac{2017-2018}{\sqrt{2017}+\sqrt{2018}}=-\frac{1}{\sqrt{2017}+\sqrt{2018}}\)

Ta thấy rằng:

\(\sqrt{2018}>\sqrt{2016}\)

\(\Leftrightarrow\sqrt{2017}+\sqrt{2018}>\sqrt{2016}+\sqrt{2017}\)

\(\Leftrightarrow\frac{1}{\sqrt{2017}+\sqrt{2018}}< \frac{1}{\sqrt{2016}+\sqrt{2017}}\)

\(\Leftrightarrow-\frac{1}{\sqrt{2017}+\sqrt{2018}}>-\frac{1}{\sqrt{2016}+\sqrt{2017}}\)

Vậy \(\sqrt{2017}-\sqrt{2018}>\sqrt{2016}-\sqrt{2017}\)

 DQN EDM
14 tháng 10 2019 lúc 22:04

bawngf nhau

Anna Taylor
14 tháng 10 2019 lúc 22:05

giải ra giùm mình với bạn -.-

Huyền Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 10 2021 lúc 23:32

b: \(\sqrt{2017}-\sqrt{2016}=\dfrac{1}{\sqrt{2016}+\sqrt{2017}}\)

\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)

mà \(\sqrt{2016}+\sqrt{2017}< \sqrt{2016}+\sqrt{2015}\)

nên \(\sqrt{2017}-\sqrt{2016}>\sqrt{2016}-\sqrt{2015}\)

Trần Thảo Mai Thương
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 22:46

\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)

\(\sqrt{2015}-\sqrt{2014}=\dfrac{1}{\sqrt{2015}+\sqrt{2014}}\)

mà \(\sqrt{2016}+\sqrt{2015}>\sqrt{2014}+\sqrt{2015}\)

nên \(\sqrt{2016}-\sqrt{2015}< \sqrt{2015}-\sqrt{2014}\)

Bruh
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 13:59

Ta có: \(12>9\)

\(6\sqrt{3}>4\sqrt{5}\)

Do đó: \(12+6\sqrt{3}>9+4\sqrt{5}\)

\(\Leftrightarrow\sqrt{12+6\sqrt{3}}>\sqrt{9+4\sqrt{5}}\)