Tìm GTLN:
\(D=5-8x-x^2\)
\(E=4x-x^2+1\)
tìm GTLN của:
D = -x^2 + 6x - 11
E = 5 - 8x - x^2
F = 4x - x^2 + 1
\(D=-x^2+6x-11\)
\(D=-\left(x^2-6x+9\right)-2\)
\(D=-\left(x-3\right)^2-2\)
\(\le-2\)
Dấu "=" xảy ra khi \(x=3\)
\(E=5-8x-x^2\)
\(E=-\left(x^2-8x+16\right)+21\)
\(E=-\left(x-4\right)^2+21\)
\(\le21\)
Dấu "=" xảy ra khi \(x=4\)
E = 5 - 8x - x^2
= x^2 - 8x + 16 - 11
= x^2 - 2.x.4 + 4^2 - 11
= (x - 4)^2 - 11
đến đây dễ rồi
tìm GTNN của biểu thức A,B,C và GTLN của D,E
A= x2-4x+1
B= 4x2+4x+11
C= (x-1)(x+3)(x+2)(x+6)
D=5-8x-x2
E= 4x-x2+1
\(A=x^2-4x^2+2-1=\left(x-2\right)^2-1\)
suy ra Amin=-1
\(B=4x^2+4x+11=4\left(x^2+x+\frac{11}{4}\right)=4\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{10}{4}\right)=4\left(x+\frac{1}{2}\right)^2+10\) Suy ra Bmin = 10
phần B có bạn làm rồi nha mình không làm nữa
A=x2-4x+1=x2-4x+4-3=(x-2)2-3
Vì (x-2)2\(\ge\)0\(\forall\)x \(\Rightarrow\)(x-2)2-3\(\ge\)-3\(\forall\)x
Vậy minA = -3
C=(x-1)(x+3)(x+2)(x+6)
C=(x-1)(x+6)(x+3)(x+2)
C=(x2+5x-6)(x2+5x+6)
Đặt x2+5x+6=t . Ta có:
C= (t-12).t=t2-12t=t2-12+36-36=(t-6)2-36
C= (x2+5x+6-6)2-36=(x2+5x)2-36
Vì (x2+5x)2\(\ge\)0\(\forall\)x \(\Rightarrow\)(x2+5x)2-36\(\ge\)-36\(\forall\)x
Vậy minC= -36
D=5-8x-x2=-(x2+8x-5)=-(x2+8x+16-21)=-\(\left[\left(x+4\right)^2-21\right]\)
D=-(x+4)2+21=21-(x+4)2
Vì (x+4)2\(\ge\)0\(\forall\)x\(\Rightarrow\)21-(x+4)2\(\le\)21\(\forall\)x
Vậy maxD=21
E=4x-x2+1=-(x2-4x-1)=-(x2-4x+4-5)=-\(\left[\left(x-2\right)^2-5\right]\)=-(x-2)2+5=5-(x-2)2
Vì (x-2)2\(\ge0\forall x\)\(\Rightarrow\)5-(x-2)2\(\le5\forall x\)
Vậy maxE=5
Tìm GTLN hoặc GTLN của biểu thức:
a)A=4x2-8x+15
b)B=-x2-8x+5
c)C=-x2+6x+1
d)D=-32+12x+11
e)E=2x2+20x-43
a,A=(2x)2-2.2x.2+22+11=(2x-2)2+11
Vì (2x-2)2luôn lớn hơn hoặc bằng 0
=>A>hoặc =0+11 hay a>hoặc =11
vậy GTNN của A là 11 khi x=1
Tìm GTLN của biểu thức:
a) A= 5x- x^2
b) B= x- x^2
c) C= 4x- x^2+ 3
d) D= -x^2+ 6x- 11
e) E= 5- 8x- x^2
f) F= 4x- x^2+ 1
Tìm GTLN của iểu thức:
a)A=x^2+6x-11
b)B=5-8x-4x^2
c)C= 1/4x^2-8x+21
d)D= 3x^2+3/x^2+x+1
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)
tính GTLN của biểu thức:
A=5x-x^2
B=x-x^2
C=4x-x^2+3
D=-x^2+6x-11
E=5-8x-x^2
F=4x-x^2+1
Tìm GTLN:
\(D=5-8x-x^2\)
\(E=4x-x^2+1\)
\(D=5-8x-x^2=-\left(x^2+2\cdot x\cdot4+16\right)+21\)
\(=-\left(x+4\right)^2+21\le21\)
Vậy GTLN của D là 21 khi x = -4
\(E=4x-x^2+1=-\left(x^2-2\cdot x\cdot2+4\right)+5\)
\(=-\left(x-2\right)^2+5\le5\)
Vậy GTLN của E là 5 khi x = 2
tìm GTLN GTNN
A= x^2-4x+7
B=x^2+3x
C=2x^2+4x+15
D= x^2+6x-15
E= -2x^2+8x-15
A=x2-4x+7
= x2-4x+4+3
= (x-2)2+3
Vì (x+2)2>/ 0
Nên (x-2)2+3>/3
Vậy MAX của A=3 khi x-2=0 => x=2