phân tích x^2-(y^2+2y)x+3y^2(y-1)
giúp mink với
Phân tích các đa thức sau thành nhân tử
a, 9x^3y^2 + 3x^2y^2
b, x^2 - 2x + 1 - y^2
- Giúp mình với ạ, mai mình thi rồi-
a: \(9x^3y^2+3x^2y^2\)
\(=3x^2y^2\cdot3x+3x^2y^2\cdot1\)
\(=3x^2y^2\left(3x+1\right)\)
b: \(x^2-2x+1-y^2\)
\(=\left(x^2-2x+1\right)-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
phân tích x^2-(y^2+2y)x+3y^2(y-1) thành nhân tử
JÚP MINK VỚI
phân tích thành nhân tử
a)3x^3y^2-6x^2y^3+9x^2y^2
b)5x^2y^3-25x^3y^4+10x^3y^3
c)12x^2y-18xy^2-30y^2
d)5.(x-y)-y.(x-y)
e)y.(x-z)+7.(z-x)
f)27x^2(y-1)-9x^3(1-y)
d)5.(x-y)-y(x-y)
=(x-y)(5-y)
e) y.(x-z)+7(z-x)
=y.(x-z)-7(x-z)
=(x-z)(y-7)
Phân tích các đa thức sau thành nhân tử:
1, 2(x-1)3-(x-1)
2, y(x-2y)2+xy2(2y-x)
3, xy(x+y)-2x-y
4, xy(x-3y)-2x+6y
1) \(2\left(x-1\right)^3-\left(x-1\right)=\left(x-1\right)\left(2\left(x-1\right)^2-1\right)\)
2) \(y\left(x-2y\right)^2+xy^2\left(2y-x\right)=\left(2y-x\right)\left(2\left(2y-x\right)+1\right)=\left(2y-x\right)\left(4y-2x+1\right)\)
3) \(xy\left(x+y\right)-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\) (xem lại đề sửa -2x thành -x mới đúng)
4) \(xy\left(x-3y\right)-2x+6y=xy\left(x-3y\right)-2\left(x-3y\right)=\left(x-3y\right)\left(xy-2\right)\)
Bài 1: Phân tích đa thức thành nhân tử:
1) \(3x^3y^2-6xy\)
2) \(\left(x-2y\right).\left(x+3y\right)-2.\left(x-2y\right)\)
3) \(\left(3x-1\right).\left(x-2y\right)-5x.\left(2y-x\right)\)
4) \(x^2-y^2-6y-9\)
5) \(\left(3x-y\right)^2-4y^2\)
6) \(4x^2-9y^2-4x+1\)
8) \(x^2y-xy^2-2x+2y\)
9) \(x^2-y^2-2x+2y\)
Bài 2: Tìm x:
1) \(\left(2x-1\right)^2-4.\left(2x-1\right)=0\)
2) \(9x^3-x=0\)
3) \(\left(3-2x\right)^2-2.\left(2x-3\right)=0\)
4) \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
Bài 2:
1: \(\left(2x-1\right)^2-4\left(2x-1\right)=0\)
=>\(\left(2x-1\right)\left(2x-1-4\right)=0\)
=>(2x-1)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
2: \(9x^3-x=0\)
=>\(x\left(9x^2-1\right)=0\)
=>x(3x-1)(3x+1)=0
=>\(\left[{}\begin{matrix}x=0\\3x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
3: \(\left(3-2x\right)^2-2\left(2x-3\right)=0\)
=>\(\left(2x-3\right)^2-2\left(2x-3\right)=0\)
=>(2x-3)(2x-3-2)=0
=>(2x-3)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
4: \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
=>\(2x^2+10x-5x-25-10x+25=0\)
=>\(2x^2-5x=0\)
=>\(x\left(2x-5\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)
Bài 1:
1: \(3x^3y^2-6xy\)
\(=3xy\cdot x^2y-3xy\cdot2\)
\(=3xy\left(x^2y-2\right)\)
2: \(\left(x-2y\right)\left(x+3y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\cdot\left(x+3y\right)-2\cdot\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+3y-2\right)\)
3: \(\left(3x-1\right)\left(x-2y\right)-5x\left(2y-x\right)\)
\(=\left(3x-1\right)\left(x-2y\right)+5x\left(x-2y\right)\)
\(=(x-2y)(3x-1+5x)\)
\(=\left(x-2y\right)\left(8x-1\right)\)
4: \(x^2-y^2-6y-9\)
\(=x^2-\left(y^2+6y+9\right)\)
\(=x^2-\left(y+3\right)^2\)
\(=\left(x-y-3\right)\left(x+y+3\right)\)
5: \(\left(3x-y\right)^2-4y^2\)
\(=\left(3x-y\right)^2-\left(2y\right)^2\)
\(=\left(3x-y-2y\right)\left(3x-y+2y\right)\)
\(=\left(3x-3y\right)\left(3x+y\right)\)
\(=3\left(x-y\right)\left(3x+y\right)\)
6: \(4x^2-9y^2-4x+1\)
\(=\left(4x^2-4x+1\right)-9y^2\)
\(=\left(2x-1\right)^2-\left(3y\right)^2\)
\(=\left(2x-1-3y\right)\left(2x-1+3y\right)\)
8: \(x^2y-xy^2-2x+2y\)
\(=xy\left(x-y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(xy-2\right)\)
9: \(x^2-y^2-2x+2y\)
\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
Phân tích đa thức thành nhân tử:
a, 5x^4-10x^2y^2+5y^4
b, x^3+3x^2-3y-1
c, x^3+x^2y-xy^2-y^3
d, 4x^2y^2-(x^2+y^2-1^2)
Giúp mình với nhé , mình không hiểu cho lắm. Cảm ơn
Bài 1 : Phân tích thành nhân tử 1) x^2 - x - y^2 - y 2) x^2 - y^2 +x - y 3) 3x - 3y + x^2 - y^2 4) 5x - 5y + x^2 - y^2 5) x^2 - y^2 + 2x -2y 6) x( x-y) + x^2 - y^2 7) x^2 - y^2 - 2x -2y
Bài 1: Phân tích đa thức thành nhân tử
1. 5x-10-xy+2y
2.2x^2+2y^2-4xy-xz+yz
3.5x^2y-10xy^2
4.3x^2-6xy+3y^2-12z^2
5.x^2+4xy-16+4y^2
6.7x-6x^2-2
7.(2x+y)^2+x(2x+y)
8.x(x-y)+5x-5y
9.x^2-y^2+2x+1
10.x^3-9x
11.xy-2y+x-2
12.x^3-3x^2-4x+12
13.3x-x^2-2xy+3y-y^2
\(1,=\left(x-2\right)\left(5-y\right)\\ 2,=2\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(2x-2y-z\right)\\ 3,=5xy\left(x-2y\right)\\ 4,=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-4z^2\right]\\ =3\left(x-y-2z\right)\left(x-y+2z\right)\\ 5,=\left(x+2y\right)^2-16=\left(x+2y-4\right)\left(x+2y+4\right)\\ 6,=-\left(6x^2-3x-4x+2\right)=-\left(2x-1\right)\left(3x-2\right)\\ 7,=\left(2x+y\right)\left(2x+y+x\right)=\left(2x+y\right)\left(3x+y\right)\\ 8,=\left(x-y\right)\left(x+5\right)\\ 9,=\left(x+1\right)^2-y^2=\left(x-y+1\right)\left(x+y+1\right)\\ 10,=\left(x^2-9\right)x=x\left(x-3\right)\left(x+3\right)\\ 11,=\left(x-2\right)\left(y+1\right)\\ 12,=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\\ 13,=3\left(x+y\right)-\left(x+y\right)^2=\left(x+y\right)\left(3-x-y\right)\)
phân tích thành nhân tử
a)3x^3y^2-6x^2y^3+9x^2y^2
b)5x^2y^3-25x^3y^4+10x^3y^3
c)12x^2y-18xy^2-30y^2
d)5.(x-y)-y.(x-y)
y.(x-z)+7.(z-x)
\(12x^2y-18xy^2-30y^2=6y\left(2x^2-3xy-5y\right)\)
\(d,5\left(x-y\right)-y\left(x-y\right)=\left(5-y\right)\left(x-y\right)\)