Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Trần Anh Khoa
Xem chi tiết
nguyenvankhoi196a
20 tháng 11 2017 lúc 20:16

Gọi hai số đó là:2k+1 và 2k+3(k thuộc N) và ƯCLN(2k+1,2k+3)=d

=>2k+1 chia hết cho d và 2k+3 chia hết cho d

=>(2k+1)-(2k+3) chia hết cho d

=>2 chia hết cho d

=>ƯCLN(2k+1,2k+3) thuộc 1 hoặc 2

Mà 2k+1 và 2k+3 là số lẻ

=>ƯCLN(2k+1,2k+3)=1

=>2 số lẻ liên tiếp là hai số nguyên tố cùng nhau

Nguyễn Anh Quân
20 tháng 11 2017 lúc 20:17

Gọi 2 số lẻ liên tiếp có dạng 2k+1 ; 2k+3 ( k thuộc N )

Gọi ƯCLN (2k+1;2k+3) = d

=> 2k+1 và 2k+3 đều chia hết cho d

=> 2k+3 - 2k - 1 chia hết cho d hay 2 chia hết cho d

Mà 2k+1 lẻ => d lẻ => d = 1

=> ƯCLN (2k+1;2k+3) = 1

=> 2k+1 và 2k+3 là 2 số nguyên tố cùng nhau

=> ĐPCM

k mk nha

Đàm Công Tuấn
20 tháng 11 2017 lúc 20:22

Gọi 2 số đó là 2k-1;2k+1\(\left(k\in N\right)\)

Giả sử (2k-1;2k+1)=d\(\left(d\in N\right)\)

Có 2k-1;2k+1 lẻ nên d lẻ

Từ điều giả sử ta có

\(\hept{\begin{cases}2k-1⋮d\\2k+1⋮d\end{cases}\Rightarrow\left(2k+1\right)-\left(2k-1\right)⋮d}\)

\(\Rightarrow2⋮d\)

mà d lẻ nên d=1

suy ra đpcm

Nguyễn Thị Diễm Quỳnh
Xem chi tiết
Người
12 tháng 11 2018 lúc 14:14

mk sẽ gửi link cho bạn ở nhắn tin,hok lớp 9 rồi nhưng mà tích cái này

nguyễn phương hoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 2 2022 lúc 19:51

a: Gọi a=UCLN(2k+1;2k+3)

\(\Leftrightarrow2k+3-2k-1⋮a\)

\(\Leftrightarrow2⋮a\)

mà 2k+1 là số lẻ

nên a=1

=>2k+1 và 2k+3 là hai số nguyên tố cùng nhau

b: Gọi a=UCLN(n+1;n+2)

\(\Leftrightarrow n+2-n-1⋮a\)

\(\Leftrightarrow1⋮a\)

=>a=1

=>n+1 và n+2 là hai số nguyên tố cùng nhau

zZzNguyễnLêQuanAnhzZz
Xem chi tiết
Hồ Thu Giang
23 tháng 12 2016 lúc 21:39

Bạn xem lại đề nhé.

Hai số nguyên tố cùng nhau có ƯCLN là 1

Mà 2 số chẵn liên tiếp luôn cùng chia hết cho 2 > 1

=> 2 số chẵn liên tiếp không nguyên tố cùng nhau

Trần Hoàng Nam
23 tháng 12 2016 lúc 21:53

2 số lẻ liên tiếp hơn kém nhau 2 đơn vị suy ra ưcln chỉ có thể là 2 mà 2 số lẻ ko chia hết cho 2 nên 2 số lẻ liên tiếp có ưcln là 19(dpcm)

Trần Hoàng Nam
23 tháng 12 2016 lúc 21:54

nhầm nha đó là 1 ko phải 19

\

Nobody Know
Xem chi tiết
Võ Đông Anh Tuấn
4 tháng 8 2016 lúc 9:34

Gọi hai số đó là:2k+1 và 2k+3(k thuộc N) và ƯCLN(2k+1,2k+3)=d

=>2k+1 chia hết cho d và 2k+3 chia hết cho d

=>(2k+1)-(2k+3) chia hết cho d

=>2 chia hết cho d =>ƯCLN(2k+1,2k+3) thuộc 1 hoặc 2

Mà 2k+1 và 2k+3 là số lẻ 

=>ƯCLN(2k+1,2k+3)=1

=>2 số lẻ liên tiếp là hai số nguyên tố cùng nhau

Edogawa Conan
5 tháng 8 2016 lúc 8:22

Gọi hai số đó là:2k+1 và 2k+3(k thuộc N) và ƯCLN(2k+1,2k+3)=d

=>2k+1 chia hết cho d và 2k+3 chia hết cho d

=>(2k+1)-(2k+3) chia hết cho d

=>2 chia hết cho d =>ƯCLN(2k+1,2k+3) thuộc 1 hoặc 2

Mà 2k+1 và 2k+3 là số lẻ 

=>ƯCLN(2k+1,2k+3)=1

=>2 số lẻ liên tiếp là hai số nguyên tố cùng nhau

SSSSSky
Xem chi tiết
Lê Phạm Mạnh Trường
Xem chi tiết

Câu 1: 2n + 5 và 3n + 7

    Gọi ước chung lớn nhất của 2n + 5 và 3n + 7 là d

        Theo bài ra ta có: 

         \(\left\{{}\begin{matrix}2n+5⋮d\\3n+7⋮d\end{matrix}\right.\)

     ⇔ \(\left\{{}\begin{matrix}6n+15⋮d\\6n+14⋮d\end{matrix}\right.\)

          6n + 15 -  6n  - 14 ⋮ d

                                    1 ⋮ d

         ⇒ d = 1

Vậy ước chung lớn nhất của 2n + 5 và 3n + 7 là 1

Hay 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau (đpcm)

Trần Thị Ngọc Hà
24 tháng 7 2023 lúc 20:52

gọi 2.n +1 là một số lẻ bất kì (n thuộc N )

suy ra 2n +1 và 2n+3 là 2 số lẻ liên tiếp  

gọi d thuoocj vào ƯC(2n+1,2n+3 )  (d thuộc N*)

suy ra 2n+1 và 2n+3 chia hết cho d 

suy ra [(2n+3) - (2n+1)] chia hết cho d 

suy ra 2 chia hết cho d

suy ra d thuộc Ư(2) ={1;2}

 suy ra d khác 2 (vì  2n+1 và 2n+3 là các số lẻ )

suy ra d =1 

suy ra ƯC (2n+1 ,2n+3 ) =1

suy ra UWCLN (3n+1 , 2n+3) =1

suy ra 2n +1 và 2n+3 nguyên tố cùng nhau 

vậy 2 số lẻ liên tiếp luôn nguyên tố cùng nhau . 

malilai nhai quai dep
Xem chi tiết
Hằng Phạm
15 tháng 11 2015 lúc 20:08

gọi là 2 số lẻ liên tiếp : 2n+1 ; 2n+3 ( n thuộc N)
gọi d là ƯC( 2n+1 ; 2n+3 ) ( d thuộc N*)
=> 2n+1 chia hết cho d ; 2n+3 chia hết cho d => 2 chia hết cho d
=> d thuộc Ư(2) ={ 1; 2}
Vì 2 là số chẵn khác d nên d =1 
=> ĐPCM
 

lê dạ quynh
15 tháng 11 2015 lúc 20:20

gọi 2 số lẻ liên tiếp là n+1 và n+3

coi d là ước chung lớn nhất của n+1 và n+ 3 \(\left(d\in N^{ }\right)\)

ta có : n+ 1 chia hết cho d

           n+3 chia hết cho d 

 suy ra n+3 - (n+1 )chia hết cho d

suy ra n+3-n-1 chia hết cho d

suy ra 2 chia hết cho d

vậy d thuộc ước của 2

vậy  d = 1 hoặc d= 2

d ko thể bằng 2 vì   n +1 là số lẻ ko chia hết cho 2

vậy d = 1

suy ra ước chung lớn nhất của 2 số lẻ liên tiếp là d

suy ra 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau

 

Đỗ Ngọc Hà Giang
Xem chi tiết
Akai Haruma
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Akai Haruma
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Akai Haruma
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.