Tìm x,biết \(x=\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\left(a,b,c\ne0\right)\)
1/ Rút gọn biểu thức:\(G=\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right)\div\frac{\sqrt{x}+1}{x}\)
2/ Cho biểu thức: \(M=x-\frac{2x-2\sqrt{x}}{\sqrt{x}-1}+\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1\)
a. Tìm ĐKXĐ
b. Rút gọn M
c. Tìm giá trị nhỏ nhất của M
3/ Chứng minh: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{a+b}|\)với \(a\ne0,b\ne0,a+b\ne0\)
4/ Biết a,b,c là số dương và ab + bc + ac =1. Hãy tính tổng:
\(M=a\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+b\sqrt{\frac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}+c\sqrt{\frac{\left(1+a^2\right)\left(1+b^2\right)}{1+c^2}}\)
Ai giải giúp mình bài 1 với bài 4 trước đi
cmr nếu\(a\left(z+y\right)=b\left(z+x\right)=c\left(x+y\right);a\ne b\ne c\ne0\Rightarrow\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
đề đúng mà bn
đề đúng thì giải giùm ik bạn ơi
a) Tìm số tự nhiên x,y biết \(\left|x-4\right|+\left|x-10\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|=2004\)
b) Cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\) (với \(a,b,c\ne0;b\ne c\) ) chứng minh rằng \(\frac{a}{b}=\frac{a-c}{c-b}\)
c) Tìm giá trị nguyên của x để biểu thức \(M=\frac{2016x-2016}{3x+2}\) có giá trị nhỏ nhất
CMR: Nếu a(y+z)=b(z+x)=c(x+y)\(\left(a\ne b\ne c\ne0\right)\)thì \(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
Biết: \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}.\left(a,b,c\ne0\right).CMR:\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\Leftrightarrow\frac{baz-cay}{a^2}=\frac{cbx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{baz-cay+cbx-abz+acy-bcx}{a^2+b^2+c^2}=0\)
\(\Rightarrow bz=cy\Leftrightarrow\frac{y}{b}=\frac{z}{c}\)
\(\Rightarrow cx=az\Leftrightarrow\frac{x}{a}=\frac{z}{c}\)
\(\Rightarrow ay=bx\Leftrightarrow\frac{x}{a}=\frac{y}{b}\)
\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Cho \(a+b+c=a^2+b^2+c^2=1\) và \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(a\ne0,b\ne0,c\ne0\right)\)
CMR \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
áp dụng t/c dãy tỉ số = nhau ta đc
\(+)\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)(do a+b+c=1)
=> \(x+y+z=\frac{x}{a}\Leftrightarrow\left(x+y+z\right)^2=\frac{x^2}{a^2}\left(1\right)\)
+) \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=>\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)(do a^2 +b^2 +c^2 =1)
\(\Leftrightarrow x^2+y^2+z^2=\frac{x^2}{a^2}\left(2\right)\)
từ (1) zà (2)
=>\(\left(x+y+z\right)^2=x^2+y^2+z^2\left(dpcm\right)\)
Có \(a+b+c=a^2+b^2+c^2=1\) và \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(a;b;c\ne0\right)\left(1\right)\)
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\left(\frac{x}{a}\right)^2=\left(\frac{y}{b}\right)^2=\left(\frac{z}{c}\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}\left(2\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}\). Theo \(\left(1\right)\)
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\). Theo \(\left(2\right)\)
Có \(a+b+c=a^2+b^2+c^2=1\Leftrightarrow\left(a+b+c\right)^2=1^2=1\).
Từ các đẳng thức trên, ta suy ra : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(=\frac{x+y+z}{1}=\frac{\left(x+y+z\right)^2}{1}=\frac{x^2+y^2+z^2}{1}\Leftrightarrow1\left(x+y+z\right)^2=1\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\Leftrightarrowđpcm\)
ối chồi ôi cái deck j đag diễn ra thế ???'
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\left(\frac{x}{a}\right)^2=\left(\frac{y}{b}\right)^2=\left(\frac{z}{c}\right)^2\)
Nhìn vào đây ng ta sẽ bảo là NGU HC
Cái j thế này, ôi ôi trời ơi, tớ phục cậu rồi Minh !
Bài 1: Tìm x biết: \(\left|x-\frac{2}{3}\right|-\left|x-7\right|=\frac{5}{3}\)
Bìa 2: Cho \(\frac{a}{b}=\frac{c}{d}\) và b+d\(\ne0\) . Chứng minh rằng \(\frac{a^{2009}+c^{2009}}{b^{2009}+d^{2009}}=\frac{\left(a+c\right)^{2009}}{\left(b+d\right)^{2009}}\)
Cho \(x=\frac{b^2+c^2-a^2}{2bc}\) và \(y=\frac{\left(a+b-c\right)\left(a+c-b\right)}{\left(a+b+c\right)\left(b+c-a\right)}\)
và \(b+c-a\ne0,bc\ne0,a+b+c\ne0\)
Tinh giá trị biểu thức \(P=x+y+xy+1\)
1) Tìm x biết : a) \(a^2x+x=2a^2-3\) ; b) \(a^2x+3ax+9=a^2\left(a\ne0;a\ne-3\right)\)
2) Cho a + b + c = 3,rút gọn biểu thức \(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}\)
3) Chứng minh rằng nếu \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1;x=y+z\)thì \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
b. Sử dụng các hằng đẳng thức
\(a^3+b^3+c^2-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=3\left(a^2+b^2+c^2-ab-bc-ca\right)\)
và \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
nên \(A=\frac{a^2+b^2+c^2-ab-bc-ca}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{1}{2}.\frac{\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Do (a - b) + (b - c) + (c - a) = 0 nên áp dụng hđt \(X^2+Y^2+Z^2=-2\left(XY+YZ+ZX\right)\)khi X + Y + Z = 0, ta có:
\(A=-2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right).\)
Bài 1 :
\(b,ax^2+3ax+9=a^2\)
\(\Leftrightarrow a^2x+3ax+9-a^2=0\)
\(\Leftrightarrow ax\left(a+3\right)+\left(a+3\right)\left(3-a\right)=0\)
\(\Leftrightarrow\left(a+3\right)\left(ax+3-a\right)=0\)
Vì \(a\ne3\Rightarrow\left(a+3\right)\ne0\Rightarrow ax+3-a=0\)
\(\Leftrightarrow ax=a-3\)
Vì \(a\ne0\Rightarrow x=\frac{a-3}{a}\)
c.Ta có \(\left(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{2}{xz}-\frac{2}{xy}+\frac{2}{yz}=1\)
Do x = y + z nên \(\frac{-2}{xz}-\frac{2}{xy}+\frac{2}{yz}=\frac{-2y-2z+2\left(y+z\right)}{\left(y+z\right)zy}=0\)
Vậy nên \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1.\)