Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hồng Thắm
Xem chi tiết
Nguyễn Hồng Thắm
6 tháng 10 2018 lúc 11:12

Ai giải giúp mình bài 1 với bài 4 trước đi

Đại gia không tiền
Xem chi tiết
o0o thư o0o
18 tháng 7 2017 lúc 20:17

mk không hiểu

Sultanate of Mawadi
27 tháng 10 2020 lúc 19:53

đề đúng mà bn

Khách vãng lai đã xóa
ariesgirl
27 tháng 10 2020 lúc 20:01

đề đúng thì giải giùm ik bạn ơi

Khách vãng lai đã xóa
Nguyễn Phương Quỳnh Chi
Xem chi tiết
Hoang Thi Minh Phuong
Xem chi tiết
Trương Quỳnh Gia Kim
Xem chi tiết
Hoàng Lê Bảo Ngọc
14 tháng 8 2016 lúc 15:42

Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\Leftrightarrow\frac{baz-cay}{a^2}=\frac{cbx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{baz-cay+cbx-abz+acy-bcx}{a^2+b^2+c^2}=0\)

\(\Rightarrow bz=cy\Leftrightarrow\frac{y}{b}=\frac{z}{c}\)

\(\Rightarrow cx=az\Leftrightarrow\frac{x}{a}=\frac{z}{c}\) 

\(\Rightarrow ay=bx\Leftrightarrow\frac{x}{a}=\frac{y}{b}\)

\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

 

 

Hoàng Phúc
14 tháng 8 2016 lúc 15:33

Hỏi đáp Toán

Tình Nguyễn Thị
Xem chi tiết
IS
18 tháng 3 2020 lúc 21:07

áp dụng t/c dãy tỉ số = nhau ta đc

\(+)\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)(do a+b+c=1)

=> \(x+y+z=\frac{x}{a}\Leftrightarrow\left(x+y+z\right)^2=\frac{x^2}{a^2}\left(1\right)\)

+) \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=>\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)(do a^2 +b^2 +c^2 =1)

\(\Leftrightarrow x^2+y^2+z^2=\frac{x^2}{a^2}\left(2\right)\)

từ (1) zà (2)

=>\(\left(x+y+z\right)^2=x^2+y^2+z^2\left(dpcm\right)\)

Khách vãng lai đã xóa

Có \(a+b+c=a^2+b^2+c^2=1\) và \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(a;b;c\ne0\right)\left(1\right)\)

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\left(\frac{x}{a}\right)^2=\left(\frac{y}{b}\right)^2=\left(\frac{z}{c}\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}\left(2\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}\). Theo \(\left(1\right)\)

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\). Theo \(\left(2\right)\)

Có  \(a+b+c=a^2+b^2+c^2=1\Leftrightarrow\left(a+b+c\right)^2=1^2=1\)

Từ các đẳng thức trên, ta suy ra : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(=\frac{x+y+z}{1}=\frac{\left(x+y+z\right)^2}{1}=\frac{x^2+y^2+z^2}{1}\Leftrightarrow1\left(x+y+z\right)^2=1\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\Leftrightarrowđpcm\)

Khách vãng lai đã xóa
๖²⁴ʱんuリ イú❄✎﹏
23 tháng 5 2020 lúc 20:04

ối chồi ôi cái deck j đag diễn ra thế ???'

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\left(\frac{x}{a}\right)^2=\left(\frac{y}{b}\right)^2=\left(\frac{z}{c}\right)^2\)

Nhìn vào đây ng ta sẽ bảo là NGU HC 

Cái j thế này, ôi ôi trời ơi, tớ phục cậu rồi Minh ! 

Khách vãng lai đã xóa
Trần Khởi My
Xem chi tiết
Lê Hồng Phúc
Xem chi tiết
Phan Thanh Tịnh
Xem chi tiết
Cô Hoàng Huyền
16 tháng 7 2017 lúc 10:58

b. Sử dụng các hằng đẳng thức

 \(a^3+b^3+c^2-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=3\left(a^2+b^2+c^2-ab-bc-ca\right)\)

và \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

nên \(A=\frac{a^2+b^2+c^2-ab-bc-ca}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{1}{2}.\frac{\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Do (a - b) + (b - c) + (c - a) =  0 nên áp dụng hđt  \(X^2+Y^2+Z^2=-2\left(XY+YZ+ZX\right)\)khi X + Y + Z = 0, ta có:

\(A=-2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right).\)

Thùy Ninh
16 tháng 7 2017 lúc 6:43

Bài 1 :

\(b,ax^2+3ax+9=a^2\) 

\(\Leftrightarrow a^2x+3ax+9-a^2=0\) 

\(\Leftrightarrow ax\left(a+3\right)+\left(a+3\right)\left(3-a\right)=0\) 

\(\Leftrightarrow\left(a+3\right)\left(ax+3-a\right)=0\)

Vì \(a\ne3\Rightarrow\left(a+3\right)\ne0\Rightarrow ax+3-a=0\) 

\(\Leftrightarrow ax=a-3\) 

Vì \(a\ne0\Rightarrow x=\frac{a-3}{a}\) 

Cô Hoàng Huyền
16 tháng 7 2017 lúc 10:28

c.Ta có \(\left(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{2}{xz}-\frac{2}{xy}+\frac{2}{yz}=1\)

Do x = y + z nên \(\frac{-2}{xz}-\frac{2}{xy}+\frac{2}{yz}=\frac{-2y-2z+2\left(y+z\right)}{\left(y+z\right)zy}=0\)

Vậy nên \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1.\)