Gieo một con súc sắc cân đối đồng chất 2 lần tính xác suất tổng số chấm của hai lần gieo là số lẻ
Gieo một con súc sắc cân đối, đồng chất liên tiếp hai lần. Biết tổng số chấm sau hai lần gieo là m. Tính xác suất để sau hai lần gieo phương trình có nghiệm.
A. .
B. .
C. .
D. .
Đáp án A
Phương trình có nghiệm
.
Do m là tổng số chấm sau 2 lần gieo súc sắc nên .
Do đó
Các trường hợp có tổng số chấm thỏa mãn yêu cầu bài toán là
.
Số trường hợp của không gian mẫu là .
Vậy xác suất cần tính là .
Gieo một con súc sắc cân đối và đồng chất hai lần liên tiếp. Tính xác suất để 1) lần thứ nhất được số chấm chẵn và lần thứ hai được số chấm lẻ. 2) hai lần gieo có số chấm như nhau. 3) mặt 6 chấm xuất hiện ít nhất một lần. 4) tổng số chấm xuất hiện trong hai lần gieo bé hơn 10.
Xác suất:
a. \(\dfrac{3}{6}.\dfrac{3}{6}=\dfrac{1}{4}\)
b. \(\dfrac{6}{36}=\dfrac{1}{6}\)
c. Xác suất mặt 6 chấm ko xuất hiện lần nào: \(\dfrac{5}{6}.\dfrac{5}{6}=\dfrac{25}{36}\)
Xác suất mặt 6 xuất hiện ít nhất 1 lần: \(1-\dfrac{25}{36}=\dfrac{11}{36}\)
d. Các trường hợp tổng 2 mặt lớn hơn hoặc bằng 10: (6;4), (4;6); (5;5); (5;6);(6;5);(6;6) có 6 khả năng
\(\Rightarrow36-6=30\) khả năng tổng số chấm bé hơn 10
Xác suất: \(\dfrac{30}{36}=\dfrac{5}{6}\)
Một con súc sắc cân đối và đồng chất được gieo hai lần. Tính xác suất sao cho :
a) Tổng số chấm của hai lần gieo là 6
b) Ít nhất một lần gieo xuất hiện mặt một chấm
Rõ ràng \(\Omega=\left\{\left(i;j\right):1\le i,j\le6\right\}\)
Kí hiệu :
\(A_1:\) "Lần đầu xuất hiện mặt 1 chấm"
\(B_1:\) "Lần thứ hai xuất hiện mặt 1 chấm"
\(C:\) " Tổng số chấm là 6"
\(D:\) "Mặt 1 chấm xuất hiện ít nhất một lần"
a) Ta có \(C=\left\{\left(1,5\right),\left(5,1\right),\left(2,4\right),\left(4,2\right)\left(3,3\right)\right\},P\left(C\right)=\dfrac{5}{36}\)
b) Ta có \(A_1,B_1\) độc lập và \(D=A_1\cup B_1\) nên
\(P\left(D\right)=P\left(A_1\right)+P\left(B_1\right)-P\left(A_1B_1\right)\)
\(=\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{6}.\dfrac{1}{6}=\dfrac{11}{36}\)
Gieo một con súc sắc cân đối, đồng chất liên tiếp hai lần. Biết tổng số chấm sau hai lần gieo là m. Tính xác suất để sau hai lần gieo phương trình x 2 − m x + 21 = 0 có nghiệm.
A. 1 6 .
B. 1 4 .
C. 1 3 .
D. 3 13
Gieo một con súc sắc cân đối, đồng chất liên tiếp hai lần. Biết tổng số chấm sau hai lần gieo là m. Tính xác suất để sau hai lần gieo phương trình x 2 - m x + 21 = 0 có nghiệm
A. 1 6
B. 1 4
C. 1 3
D. 3 13
Gieo một con súc sắc cân đối, đồng chất liên tiếp hai lần. Biết tổng số chấm sau hai lần gieo là m. Tính xác suất để sau hai lần gieo phương trình x 2 − m x + 21 = 0 có nghiệm.
A. 1 6
B. 1 4
C. 1 3
D. 3 13
Gieo 1 con súc sắc cân đối và đồng chất 2 lần. Xác suất để tổng số chấm của 2 lần gieo bằng 9 là
A. 1 8
B. 1 6
C. 1 10
D. 1 9
Đáp án D
Tung con súc sắc 2 lần, mỗi lần có trường hợp xảy ra ⇒ K G M : n Ω = 6.6 = 36
Có4 trường hợp xuất hiện số chấm của 2 lần gieo bằng 9 là: 3 ; 6 ; 4 ; 5 ; 5 ; 4 ; 6 ; 3
Vậy xác suất để tổng số chấm của 2 lần gieo bằng 9 là: 4 36 = 1 9
Gieo 1 con súc sắc cân đối và đồng chất 2 lần. Xác suất để tổng số chấm của 2 lần gieo bằng 9 là :
A. 1 8
B. 1 6
C. 1 10
D. 1 9
Đáp án D
Tung con súc sắc 2 lần, mỗi lần có 6 trường hợp xảy ra => KGM: n Ω = 6.6 = 36
Có 4 trường hợp xuất hiện số chấm của 2 lần gieo bằng 9 là: (3;6); (4;5); (5;4); (6;3)
Vậy xác suất để tổng số chấm của 2 lần gieo bằng 9 là: 4 36 = 1 9
Gieo ngẫu nhiên một con súc sắc cân đối và đồng chất 2 lần. Tính xác suất của các biến cố
A: “ Mặt 6 chấm xuất hiện ở lần gieo đầu tiên”
B: “Số chấm ở 2 lần gieo như nhau”
C: “Tổng số chấm xuất hiện ở hai lần gieo bằng 9”
gieo một con súc sắc đồng chất cân đối ba lần liên tiếp tính xác suất của biến cố " tổng số chấm ba lần gieo không chia hết cho 5"