Đáp án D
Tung con súc sắc 2 lần, mỗi lần có trường hợp xảy ra ⇒ K G M : n Ω = 6.6 = 36
Có4 trường hợp xuất hiện số chấm của 2 lần gieo bằng 9 là: 3 ; 6 ; 4 ; 5 ; 5 ; 4 ; 6 ; 3
Vậy xác suất để tổng số chấm của 2 lần gieo bằng 9 là: 4 36 = 1 9
Đáp án D
Tung con súc sắc 2 lần, mỗi lần có trường hợp xảy ra ⇒ K G M : n Ω = 6.6 = 36
Có4 trường hợp xuất hiện số chấm của 2 lần gieo bằng 9 là: 3 ; 6 ; 4 ; 5 ; 5 ; 4 ; 6 ; 3
Vậy xác suất để tổng số chấm của 2 lần gieo bằng 9 là: 4 36 = 1 9
Kết quả (b,c) của việc gieo con súc sắc cân đối và đồng chất hai lần (trong đó b là số chấm xuất hiện trong lần gieo đầu, c là số chấm xuất hiện ở lần gieo thứ hai) được thay vào phương trình x 2 + b x + c x + 1 = 0 * . Xác suất để phương trình (*) vô nghiệm là :
A. 17 36 .
B. 1 2 .
C. 1 6 .
D. 19 36 .
Kết quả b , c của việc gieo con súc sắc cân đối và đồng chất hai lần, trong đó b là số chấm suất hiện trong lần gieo đầu, c là số chấm suất hiện ở lần gieo thứ hai, được thay vào phương trình bậc hai x 2 + b x + c = 0 . Tính xác suất để phương trình có nghiệm
A. 19 36
B. 1 18
C. 1 2
D. 17 36
Gieo một con súc sắc cân đối, đồng chất liên tiếp hai lần. Biết tổng số chấm sau hai lần gieo là m. Tính xác suất để sau hai lần gieo phương trình x 2 − m x + 21 = 0 có nghiệm.
A. 1 6 .
B. 1 4 .
C. 1 3 .
D. 3 13
Gieo một con súc sắc cân đối, đồng chất liên tiếp hai lần. Biết tổng số chấm sau hai lần gieo là m. Tính xác suất để sau hai lần gieo phương trình x 2 − m x + 21 = 0 có nghiệm.
A. 1 6
B. 1 4
C. 1 3
D. 3 13
Gieo hai con xúc sắc cân đối và đồng chất 1 lần. Mỗi con xúc sắc có số chấm các mặt là 1,2,3,4,5,6, con xúc sắc còn lại có số chấm các mặt là 2,3,4,5,6,6. Tính xác suất để tổng số chấm xuất hiện bằng
A. 5/36
B. 1/5
C. 6/35
D. 1/6
Gieo đồng thời hai con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc đó không vượt quá 5 bằng
A. 2 9
B. 1 6
C. 5 18
D. 5 12
Kết quả (b; c) của việc gieo một con súc sắc cân đối và đồng chất hai lần liên tiếp, trong đó b là số chấm xuất hiện của lần gieo thứ nhất, c là số chấm xuất hiện của lần gieo thứ hai được thay vào phương trình bậc hai x 2 + b x + c = 0 . Xác suất để phương trình bậc hai đó vô nghiệm là
A. 7 12
B. 17 36
C. 23 36
D. 5 36
Gieo đồng thời hai con súc sắc cân đối và đồng chất. Tính xác suất P để hiệu số chấm trên các mặt xuất hiện của hai con súc sắc bằng 2.
A. P = 1 3
B. P = 2 9
C. P = 1 9
D. P = 1
Gieo ba con súc sắc cân đối và đồng chất. Xác suất để số chấm xuất hiện trên ba mặt lập thành một cấp số cộng với công sai bằng 1 là
A. 1 6
B. 1 36
C. 1 9
D. 1 27