Tìm gtnn: (2x-1)^2 + (x+2)^2 Giúp mik với :^
Tìm gtln gtnn của 1/2x^2+1/4x+1/9. Giúp mik với
Tìm GTNN Q=x^2 +x +1 Giúp mik với
\(Q=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\\ Q_{min}=\dfrac{3}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
Q=(x+1)2
GTNN là Q=0
xảy ra khi (x+1)2=0
x+1=0
x =-1
Tìm GTNN
3/2x^2+x+1
giúp mik mik đag rất cần gấp
Biểu thức này chỉ có GTLN thôi.
\(A=\frac{3}{2x^2+x+1}=\frac{3}{2\left(x^2+\frac{1}{2}x+\frac{1}{2}\right)}=\frac{3}{2\left[\left(x+\frac{1}{4}\right)^2+\frac{7}{16}\right]}=\frac{3}{2\left(x+\frac{1}{4}\right)^2+\frac{7}{8}}\le\frac{3}{\frac{7}{8}}=\frac{24}{7}\)
GTLN của A là \(\frac{24}{7}\) khi \(x+\frac{1}{4}=0\Rightarrow x=-\frac{1}{4}\)
GTNN của \(A=\frac{x^2+x+1}{x^2+2x+1}\)
Giúp mik với!!!
x2+x+1=x2+2x+1-x-1+1=(x+1)2-(x+1)+1
x2+2x+1=(x+1)2
đặt x+1=y , A=(y2-y+1)/y2=1-1/y+1/y2
tiếp tục đặt 1/y=z ta đc A=z2-z+1=(z-1/2)2+3/4 >= 3/4
minA=3/4 dấu "=" khi z=1/2<=>y=2<=>x=1
\(GTNN:\sqrt{x^2+2x+5}\)
\(GTNN:\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)giúp mik với!!!
Bài 1: \(\sqrt{x^2+2x+5}=\sqrt{\left(x^2+2x+1\right)+4}\)
\(=\sqrt{\left(x+1\right)^2+4}\ge\sqrt{4}=2\)
Dấu "=" xảy ra khi \(x=-1\)
Vậy...
Bài 2:
\(\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=\left|2x-1\right|+\left|2x-3\right|\)\(=\left|2x-1\right|+\left|3-2x\right|\)
\(\ge\left|2x-1+3-2x\right|=2\)
Dấu "=" xảy ra khi \(\frac{1}{2}\le x\le\frac{3}{2}\)
Vạy....
Nhờ các bạn giải giúp bài toán:Tìm GTNN của A=-x/(x^2+x+1) với x>0
Tìm GTNN của B=(3x^2-4x)/(x^2+1)
Tìm GTNN của C= (2x+1)/(x^2+2)
Tìm GTLN của M=(x^2+x+1)/x^2
tìm GTNN (giúp mik zs mik cần gấp)
Q=\(\frac{2x}{x^2+x+1}\)
( dùng bđt Cô-si)
tìm GTNN của biểu thức : |2x+1|+|x-y+1|, b: |x+2|+1/2.|2x-1| tìm GTLN của biểu thức : |3x+2|-|2020-3x| các cao nhân giúp em với ạ
Tìm GTNN của biểu thức sau:
A = \(\dfrac{1}{2}\) . (x - 3)\(^2\) + 10
mọi người ơi giúp mik với ai làm đc mik tick cho
\(A=\dfrac{1}{2}\left(x-3\right)^2+10\ge10\\ A_{min}=10\Leftrightarrow x-3=0\Leftrightarrow x=3\)
\(A=\dfrac{1}{2}\left(x-3\right)^2+10\ge10\forall x\)
Dấu '=' xảy ra khi x=3