Dạng aaa luôn chia hết cho 37
Chứng tỏ rằng
a)Số có dạng aaa luôn chia hết cho 37
b) Số có dạng aaa aaa luôn chia hết cho 7
a) Ta có : aaa = a x 111
= a x 37 x 3 \(⋮\)37
=> aaa \(⋮\)37 (đpcm)
b) Ta có : aaa aaa = a x 111 111
= a x 7 x 15 873 \(⋮\)7
=> aaa aaa \(⋮\)7 (đpcm)
chứng minh rằng aaa luôn chia hết cho 37, chứng minh aaaa luôn chia hết cho 37
Ta có: aaa=a.111=a.3.37 chia hết cho 37
Ta có : aaa = 111 x a = 37 x 3 x a
=> aaa luôn chia hết cho 37
Còn cái kia chịu
aaaa luôn chia hết cho 37 là sai. VD:1111:37=30,02....
Chứng tỏ rằng: có số tự nhiên có dạng aaa luôn chia hết cho 37. Giải hộ mik cái mai nộp rồi
Phân tích cấu tạo số ta có : aaa=a x 111 = a x 3 x 37
=> aaa luôn chia hết cho 37 (đpcm)
Có 100 quyển vở và 80 cây bút được chia thành các phần thưởng giống nhau, mỗi phần thưởng gồm cả 2 loại . Sau khi chia còn dư 10 quyển vở và 8 cây bút ko thể chia đều vào các phần thưởng . Tính xem có ... phần thưởng
Chứng tỏ rằng:
a,Số có dạng aaa (có gạch ngang trên đầu của aaa) luôn chia hết cho 37.
b,Hiệu số: ab - ba ( cả hai đều có gạch ngang ,a nhỏ hơn hoặc bằng b) bao giờ cũng chia hết cho 9.
a) Ta có: aaa=a.111
=a.3.37 chia hết cho 37
b)Ta có: ab-ba=(10a+b)-(10b+a)
=(10a-a)-(10b-b)
=9a-9b
=9(a-b) chia hết cho 9 (đpcm)
a) Ta có:
aaa = 100a + 10a + a
= 111a
= 3.37.a chia hết cho 37
b) Ta có:
ab - ba = (10a + b) - (10b + a)
= 10a + b - 10b - a
= 9a - 9b
= 9.(a - b) chia hết cho 9
kb vs mk nha , mk bt cách lm nhứn dài quá , nhác ghi lắm
1) Chứng tỏ rằng số có dạng aaa aaa bao giờ cũng chia hết cho 11 (aaa aaa có gạch trên đầu)
2) Chứng tỏ rằng số có dạng abc abc bao giờ cũng chia hết cho 11 (abc abc có gạch trên đầu)
3) Chứng tỏ rằng lấy một số có hai chữ số, cộng với một số gồm hai chữ số ấy viết theo thứ tự ngược lại, ta luôn luôn được một số chia hết cho 11 (chẳng hạn 37 + 73 = 110, chia hết cho 11).
Giúp mình vs, cần gấp. Bài này là bài 120, 121, 122 trong sách bài tập lớp 6. Không được giải theo sách bài tập nha!
\(\overline{aaaa}\) gạch trên đầu bn zô \(fx\) vô hình nì nè
Tó biết làm mỗi 2 bài trên thui
1 ) aaa aaa = a . 111 111 = a . 11 . 10101 => chia hết cho 11
2 ) abc abc = abc . 1001 = abc . 11 . 91 = > chia hết cho 11
làm theo cách thầy dạy chứ hoàn toàn ko nhìn sách giải nhé
chứng minh aaa luôn chia hết cho 37
Ta có
aaa = 100a+10a+a=111a
Vì 111 chia hết cho 37
=>111a chia hết cho 37 hay aaa chia hết cho 37
chứng minh rằng aaa luôn chia hết cho 37
aaa= a x 100 + a x 10 + a
= a x ( 100+10+1)
= a x 111
vì 111 chia hết cho 37 nên a x 111 luôn chia hết cho 37 với mọi a
vậy aaa chia hết cho 37 với mọi a là số tự nhiên
Ta có : aaa = a x 100 + a x 10 + a x 1
aaa = a x (100 + 10 + 1)
aaa = a x 111
Vì 111 chia hết cho 37 nên a x 111 cũng chia hết cho 37 => aaa chia hết cho 37
Vậy aaa luôn chia hết cho 37.
chứng minh rằng số aaa luôn chia hết cho 37
\(aa=a\times100+a\times10+a=a\times\left(100+10+1\right)=a\times111=a\times3\times37\)
Vậy \(aaa⋮37\)
Chúc bạn học tốt
aaa = a x 111 = a x 3 x 37 luôn luôn chia hết cho 37
Vậy số aaa luôn chia hết cho 37
Ta có : aaa \(⋮\)37
=> aaa \(⋮\)37 = a \(\times\) 111 \(⋮\) 37 = a \(\times\) 3 \(\times\) 37 \(⋮\) 37 ( đpcm )
Chứng minh rằng :
a) ab . (a + b) chia hết cho 2
b) ab + ba chia hết cho 11
c) aaa luôn chia hết cho 37
d) aaabbb luôn chia hết cho 37
e) ab - ba chia hết cho 9
aaabbb = aaa000 + bbb
= a.111.1000 + b.111
= a.3.37.1000 + b.3.37
= 37.(a.3.1000 + b.3) ⋮ 37
a)
- nếu a và b cùng là số chẵn thì ab(a+b)chia hết cho 2
- nếu a chẵn,b lẻ(hoặc a lẻ,b chẵn)thì ab (a+b) chia hết cho 2
-nếu a và b cùng lẻ thì (a+b) chẵn nên (a+b)chia hết cho 2,vậy ab(a+b) chia hết cho 2
vậy nếu a,b thuộc N thì ab(a+b) chia hết cho 2
b)
Ta có:ab+ba
=10a+b+10b+a
=11a+11b
Ta thấy:11a chia hết cho 11,11b chia hết cho 11
Suy ra:ab + ba chia hết cho 11