Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
pro
Xem chi tiết
Nguyễn Trần Minh Châu
5 tháng 5 2021 lúc 11:09

pro rồi thì bạn cần gì mình giải nhỉ

??

Nguyễn Việt Lâm
5 tháng 5 2021 lúc 16:54

\(A=x-2y+3\Rightarrow x=A+2y-3\)

\(\Rightarrow\left(2y+A-3\right)^2+y\left(A+2y-3\right)+2y^2=1\)

\(\Leftrightarrow8y^2+\left(5A-15\right)y+A^2-6A+8=0\)

\(\Delta=\left(5A-15\right)^2-32\left(A^2-6A+8\right)\ge0\)

\(\Leftrightarrow-7A^2+42A-31\ge0\)

\(\Rightarrow\dfrac{21-4\sqrt{14}}{7}\le A\le\dfrac{21+4\sqrt{14}}{7}\)

liên hoàng
Xem chi tiết
Bảy việt Nguyễn
Xem chi tiết
Chuppybaek
Xem chi tiết
Khương Vũ Phương Anh
Xem chi tiết
Trần Nam Hải
Xem chi tiết
Vũ Tiến Manh
26 tháng 10 2019 lúc 21:52

A= \(\frac{1}{\left(x+y\right)\left(x^2+y^2-xy\right)+xy}+\frac{4x^2y^2+2}{xy}=\)\(\frac{1}{x^2+y^2}+4xy+\frac{2}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+4xy+\frac{1}{4xy}+\frac{5}{4xy}\) (1)

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b};a+b\ge2\sqrt{ab},\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)áp dụng vào trên ta được

 (1) \(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{4}.\frac{4}{\left(x+y\right)^2}=4+2+\frac{5}{4}.4=11.\)

dấu '=" khi x=y = 1/2

Khách vãng lai đã xóa
Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 12 2021 lúc 19:49

\(A=\dfrac{x^3+y^3+4}{xy+1}\ge\dfrac{x^3+y^3+4}{\dfrac{x^2+y^2}{2}+1}=\dfrac{x^3+y^3+4}{2}=\dfrac{\dfrac{1}{2}\left(x^3+x^3+1\right)+\dfrac{1}{2}\left(y^3+y^3+1\right)+3}{2}\)

\(\ge\dfrac{\dfrac{3}{2}\left(x^2+y^2\right)+3}{2}=3\)

\(A_{min}=3\) khi \(x=y=1\)

Do \(x^2+y^2=2\Rightarrow\left\{{}\begin{matrix}x\le\sqrt{2}\\y\le\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^3\le\sqrt{2}x^2\\y^3\le\sqrt{2}y^2\end{matrix}\right.\)

\(\Rightarrow A\le\dfrac{\sqrt{2}\left(x^2+y^2\right)+4}{xy+1}=\dfrac{4+2\sqrt{2}}{xy+1}\le\dfrac{4+2\sqrt{2}}{1}=4+2\sqrt{2}\)

\(A_{max}=4+2\sqrt{2}\) khi \(\left(x;y\right)=\left(0;\sqrt{2}\right);\left(\sqrt{2};0\right)\)

nguyen thi minh ngoc
Xem chi tiết
Nguyễn Quang Định
21 tháng 7 2018 lúc 8:30

Bài 1 dùng tam thức bậc 2, bài 2 chia cả tử và mẫu cho y2, đặt x/y=t rồi làm tương tự bài 1

Nguyễn Quang Định
22 tháng 7 2018 lúc 9:32

Đặt \(\dfrac{x}{y}=t\)

\(Q=\dfrac{\dfrac{x^2-xy+2y^2}{y^2}}{\dfrac{x^2-xy+y^2}{y^2}}=\dfrac{\dfrac{x^2}{y^2}-\dfrac{x}{y}+2}{\dfrac{x^2}{y^2}-\dfrac{x}{y}+1}=\dfrac{t^2-t+2}{t^2-t+1}\)

\(\Rightarrow Qt^2-Qt+Q=t^2-t+2\Leftrightarrow t^2\left(Q-1\right)-t\left(Q-1\right)+Q-2=0\)

\(\Delta=\left(Q-1\right)^2-4\left(Q-1\right)\left(Q-2\right)\ge0\)

\(\Rightarrow1\le Q\le\dfrac{7}{3}\)

An Vy
Xem chi tiết