Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
giải giúp mik bt này vs mn!
1)\(\left\{{}\begin{matrix}2x^2+y^2+x=3\left(xy+1\right)+2y\\\dfrac{2}{3+\sqrt{2x-y}}+\dfrac{2}{3+\sqrt{4-5x}}=\dfrac{9}{2x-y+9}\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}\left(x+3y+1\right)\sqrt{2xy+2y}=y\left(3x+4y+3\right)\\\left(\sqrt{x+3}-\sqrt{2y-2}\right)\left(x-3+\sqrt{x^2+x+2y-4}\right)=4\end{matrix}\right.\)
3)\(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}\sqrt{2x-3}=\left(y^2+2011\right)\left(5-y\right)+\sqrt{y}\\y\left(y-x+2\right)=3x+3\end{matrix}\right.\)
5)\(\left\{{}\begin{matrix}x^3+2x^2=x^2y+2xy\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14=x-2}\end{matrix}\right.\)
giúp mik giải bài hệ pt vs ạ!
1,\(\left\{{}\begin{matrix}x^2+y^2+\dfrac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{matrix}\right.\)
2,\(\left\{{}\begin{matrix}2x^3+xy^2+x=y^3+4x^2y+2y\\\sqrt{4x^2+x+6}-5\sqrt{1+2y}=1-4y\end{matrix}\right.\)
3,\(\left\{{}\begin{matrix}2x^2+\sqrt{2}x=\left(x+y\right)y+\sqrt{x+y}\\\sqrt{x-1}+xy=\sqrt{y^2+21}\end{matrix}\right.\)
4,\(\left\{{}\begin{matrix}\sqrt{9y^2+\left(2y+3\right)\left(y-x\right)}+4\sqrt{xy}=7x\\\left(2y-1\right)\sqrt{1+x}+\left(2y+1\right)\sqrt{1-x}=2y\end{matrix}\right.\)
giải hpt \(\left\{{}\begin{matrix}\dfrac{1-xy}{x\left(1+y^2\right)}=\dfrac{2}{5}\\\dfrac{1-xy}{y\left(1+x^2\right)}=\dfrac{1}{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+y\right)\left(1+\dfrac{1}{xy}\right)=4\\xy+\dfrac{1}{xy}+\dfrac{x^2+y^2}{xy}=4\end{matrix}\right.\)
giải hpt:
\(\left\{{}\begin{matrix}x\left(x+1\right)+\dfrac{1}{y}\left(\dfrac{1}{y}+1\right)=4\\x^3y^3+x^2y^2+xy+1=4y^3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y+x^3y+xy^2+xy=-\dfrac{5}{4}\\x^4+y^2+xy\left(1+2x\right)=-\dfrac{5}{4}\end{matrix}\right.\)
giải hpt:
\(\left\{{}\begin{matrix}3\left(y^2+x^2\right)+\dfrac{1}{\left(x-y\right)^2}=2\left(10-xy\right)\\2x+\dfrac{1}{x-y}=5\end{matrix}\right.\)
Giải hệ
\(\left\{{}\begin{matrix}\left(x+y\right)^3+8xy=2\left(x+y\right)\left(8+xy\right)\\\dfrac{1}{\sqrt{x+y}}=\dfrac{1}{x^2-y}\end{matrix}\right.\)
giải hệ phương trình
a,\(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{1}{x}-\dfrac{4}{y}=-3\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}\dfrac{4}{x+2}-\dfrac{1}{x-2y}=1\\\dfrac{20}{x+2y}+\dfrac{3}{x-2y}=1\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}\left|x-1\right|+\left|y-2\right|=2\\\left|x-1\right|+y=3\end{matrix}\right.\)