Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trọng Tuấn
Xem chi tiết
Nameless
Xem chi tiết
Thắng Nguyễn
26 tháng 1 2018 lúc 18:49

\(x^4+6x^3+11x^2+6x\)

\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

\(x\in Z\Rightarrow x;x+1;x+2;x+3\) là 4 số nguyên liên tiếp

\(\Rightarrow x\left(x+1\right)\left(x+2\right)\left(x+3\right)\) là tích 4 số nguyên liên tiếp

Suy ra \(\hept{\begin{cases}\text{có tích 2 số chẵn liên tiếp }\Rightarrow⋮8\\\text{có một số chia hết 3}\\\left(8;3\right)=1\end{cases}}\)

\(\Rightarrow x\left(x+1\right)\left(x+2\right)\left(x+3\right)⋮24\)

Cao Chi Hieu
Xem chi tiết
Nguyễn Huệ Lam
27 tháng 8 2017 lúc 17:11

 f(x) = x4 + 6x3 +11x+ 6x 

\(=x^4+x^3+5x^3+5x^2+6x^2+6x\)

\(=\left(x^4+x^3\right)+\left(5x^3+5x^2\right)+\left(6x^2+6x\right)\)

\(=x^3\left(x+1\right)+5x^2\left(x+1\right)+6x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3+5x^2+6x\right)\)

\(=x\left(x+1\right)\left(x^2+5x+6\right)\)

\(=x\left(x+1\right)\left[x^2+2x+3x+6\right]\)

\(=x\left(x+1\right)\left[\left(x^2+2x\right)+\left(3x+6\right)\right]\)

\(=x\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)

\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

Nguyễn Huệ Lam
27 tháng 8 2017 lúc 17:14

b)Ta có

\(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

\(=\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]+1\)

\(=\left(x^2+3x\right).\left(x^2 +3x+2\right)+1\)

\(=\left(x^2+3x+1-1\right).\left(x^2+3x+1+1\right)+1\)

\(=\left[\left(x^2+3x+1\right)-1\right].\left[\left(x^2+3x+1\right)+1\right]+1\)

\(=\left(x^2+3x+1\right)^2-1+1=\left(x^2+3x+1\right)^2\)

Vậy với mọi x nguyên thì f(x) + 1 luôn có giá trị là 1 số chính phương 

Nguyễn Thị Ngọc Mai
Xem chi tiết
Trần Thanh Phương
16 tháng 2 2019 lúc 22:09

1) \(x^3+6x^2+11x+6\)

\(=x^3+x^2+5x^2+5x+6x+6\)

\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+5x+6\right)\)

\(=\left(x+1\right)\left(x^2+2x+3x+6\right)\)

\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

Trần Thanh Phương
17 tháng 2 2019 lúc 11:23

2) \(A=n^3\left(n^2-7\right)^2-36n\)

\(A=n\left[n^2\left(n^2-7\right)^2-36\right]\)

\(A=n\left\{\left[n\left(n^2-7\right)\right]^2-6^2\right\}\)

\(A=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(A=n\left(n^3-7n-6\right)\left(n^3-n-6n+6\right)\)

\(A=n\left(n^3-7n-6\right)\left[n\left(n-1\right)\left(n+1\right)-6\left(n-1\right)\right]\)

\(A=n\left(n^3-7n-6\right)\left(n-1\right)\left(n^2+n-6\right)\)

\(A=n\left(n-1\right)\left(n^3-7n-6\right)\left(n^2+3n-2n-6\right)\)

\(A=n\left(n-1\right)\left(n^3-7n-6\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n^3-7n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n^3-n-6n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left[n\left(n-1\right)\left(n+1\right)-6\left(n+1\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n^2+n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n^2+3n-2n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n+3\right)\left(n-2\right)\)

\(A=\left(n-1\right)n\left(n+1\right)\left(n-2\right)^2\left(n+3\right)^2\)

Rồi sao nữa còn nghĩ :))

Triệu Việt Hà (Vịt)
Xem chi tiết
Nguyễn Văn A
22 tháng 12 2022 lúc 21:51

Bài 1:

\(\left\{{}\begin{matrix}xy+2=2x+y\left(1\right)\\2xy+y^2+3y=6\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow xy-y+2-2x=0\)

\(\Rightarrow y\left(x-1\right)-2\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(y-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Với \(x=1\). Thay vào (2) ta được:

\(2y+y^2+3y=6\)

\(\Leftrightarrow y^2+5y-6=0\)

\(\Leftrightarrow y^2+y-6y-6=0\)

\(\Leftrightarrow y\left(y+1\right)-6\left(y+1\right)=0\)

\(\Leftrightarrow\left(y+1\right)\left(y-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=6\end{matrix}\right.\)

Với \(y=2\). Thay vào (2) ta được:

\(2x.2+2^2+3.2=6\)

\(\Leftrightarrow4x+4+6=6\)

\(\Leftrightarrow x=-1\)

Vậy hệ phương trình đã cho có nghiệm (x,y) \(\in\left\{\left(1;-1\right),\left(1;6\right),\left(-1;2\right)\right\}\)

Nguyễn Văn A
22 tháng 12 2022 lúc 21:55

Bài 2:

\(f\left(x\right)=x^4+6x^3+11x^2+6x\)

\(=x\left(x^3+6x^2+11x+6\right)\)

\(=x\left(x^3+x^2+5x^2+5x+6x+6\right)\)

\(=x\left[x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\right]\)

\(=x\left(x+1\right)\left(x^2+5x+6\right)\)

\(=x\left(x+1\right)\left(x^2+3x+2x+6\right)\)

\(=x\left(x+1\right)\left[x\left(x+3\right)+2\left(x+3\right)\right]\)

\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

b) Ta có: \(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

\(=x\left(x+3\right).\left(x+1\right)\left(x+2\right)+1\)

\(=\left(x^2+3x\right).\left(x^2+3x+2\right)+1\)

\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)

\(=\left(x^2+3x+1\right)^2\)

Vì x là số nguyên nên \(f\left(x\right)+1\) là số chính phương.

Hoàng Trang Ngân
Xem chi tiết
0o0 Nhok kawaii 0o0
Xem chi tiết
Pham Van Hung
4 tháng 9 2018 lúc 20:56

\(B=x^4-6x^3+11x^2-6x+1\)

   \(=x^4-6x^3+9x^2+2x^2-6x+1\)

   \(=\left(x^2\right)^2-2.x^2.3x+\left(3x\right)^2+2\left(x^2-3x\right)+1\)

   \(=\left(x^2-3x\right)^2+2\left(x^2-3x\right).1+1^2\)

   \(=\left(x^2-3x+1\right)^2\)

nguyễn thị hiền
Xem chi tiết
Không Tên
15 tháng 7 2018 lúc 21:43

\(B=x^4-6x^3+11x^2-6x+1\)

\(=\left(x^4-3x^3+x^2\right)-\left(3x^3-9x^2+3x\right)+x^2-3x+1\)

\(=x^2\left(x^2-3x+1\right)-3x\left(x^2-3x+1\right)+\left(x^2-3x+1\right)\)

\(=\left(x^2-3x+1\right)^2\)

Sakura
Xem chi tiết