Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trọng Anh
Xem chi tiết
Ngọc Anh
Xem chi tiết
My Tran
22 tháng 7 2018 lúc 13:36

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

Không Tên
22 tháng 7 2018 lúc 20:37

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)

Dương
Xem chi tiết
Shauna
28 tháng 8 2021 lúc 16:15

Bạn xem lại ý a ( đề bài ) nhé. Mk nghĩ nó ntn 

undefined

Nguyễn Lê Phước Thịnh
28 tháng 8 2021 lúc 23:26

b: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC

 ☘ Nhạt ☘
Xem chi tiết
Nguyễn Thị Thúy Vân
Xem chi tiết
Akai Haruma
3 tháng 12 2021 lúc 20:06

Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông ta có:

$AH^2=BH.CH=10.22,5=225$

$\Rightarrow AH=15$ (cm)

$BC=BH+CH=10+22,5=32,5$ (cm)

Diện tích tam giác $ABC$:

$\frac{AH.BC}{2}=\frac{15.32,5}{2}=243,75$ (cm2)

Akai Haruma
3 tháng 12 2021 lúc 20:07

Hình vẽ:

Mạnh
Xem chi tiết
Mạnh
10 tháng 2 2021 lúc 20:20
Các bạn giúp mình nha mình kết bạn lại
Khách vãng lai đã xóa
bui van trong
10 tháng 2 2021 lúc 20:40

Áp dụng định lý PYTAGO vào tam giác ABC có

BC^2=AB^2+AC^2= 9^2+12^2=225

=>BC= 15

Sabc= 1/2.AB.AC = 54 mà Sabc = 1/2.AH.BC 

=>1/2.AH = Sabc: BC = 3.6=> AH =7,2

Khách vãng lai đã xóa
ngô thùy linh
Xem chi tiết
Nguyễn Huy Tú
10 tháng 9 2021 lúc 14:21

Ta có : \(\frac{HB}{HC}=4\Rightarrow HB=4HC\)

lại có : \(BC=HB+CH\Rightarrow25=4HC+CH\Leftrightarrow5HC=25\Leftrightarrow HC=5\)cm 

=> \(HB=4.5=20\)cm 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AB^2=BH.BC=20.25\Rightarrow AB=10\sqrt{5}\)cm 

* Áp dụng hệ thức : \(AH^2=HC.HB=100\Rightarrow AH=10\)cm 

* Áp dụng hệ thức : \(AC^2=CH.BC=5.25\Rightarrow AC=5\sqrt{5}\)cm

\(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.10.25=\frac{250}{2}=145\)cm2

Khách vãng lai đã xóa
Mạnh
Xem chi tiết
bui van trong
16 tháng 2 2021 lúc 20:19

) Chứng minh Δ EBF đồng dạng Δ EDC Tam giac EDC dong dang tam giac ADF(g,g,g)=> Goc AFD = goc ECD Ma AFD = 90 - goc B  => Goc EDC = Goc BXet tam giac vuong EBF va tam giac vuong EDC ta co:+) Goc A1 = goc E = 90+) Goc B = Goc EDC+) Goc BFE = Goc C=> Δ EBF đồng dạng Δ EDC

Khách vãng lai đã xóa
Mạnh
Xem chi tiết
Mạnh
14 tháng 2 2021 lúc 19:51
Các bn Lm câu B giúp mình nha
Khách vãng lai đã xóa
Đoàn Hải Cường
14 tháng 2 2021 lúc 19:53

Trao lì xì

Khách vãng lai đã xóa

Cho Δ ABC vuông tại A, AB = 9cm, AC = 12cm, đường cao AH, phân giác BD. Vẽ DC ⊥ BC, đường thẳng DE cắt đường thẳng AB tại Fa) Tính BH, CHAp dung dl Pytago vao trong tam giac vuong ABC ta co:BC^2 = AB^2 + AC^2 => BC = 15AH la duong cao trong tam giac vuong ABC=> 1/AH^2 = 1/AB^2 + 1/AC^2=> AH = 7,2Ap dung dl PYtago vao trong tam giac vuong AHB ta duoc:BH^2 = AB^2 - AH^2=> BH = 5,4BC = BH + HC

=> HC = 9,6

Khách vãng lai đã xóa
Tan Khai Tran
Xem chi tiết
An Thy
15 tháng 7 2021 lúc 11:50

bạn tham khảo ở đây,mình vừa mới làm luôn

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-tai-a-duong-cao-ah-biet-ab6cm-bh3-cm-tinh-ahbchc.1230862563534

Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 13:52

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AH^2=6^2-3^2=27\)

hay \(AH=3\sqrt{3}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow CH=\dfrac{AH^2}{HB}=\dfrac{\left(3\sqrt{3}\right)^2}{3}=9\left(cm\right)\)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow AC^2=\left(3\sqrt{3}\right)^2+9^2=108\)

hay \(AC=6\sqrt{3}\left(cm\right)\)