\(\sqrt[3]{x+2}-\sqrt[3]{3x+2}=2\) giai pt vo ti
giai pt vo ti sau
\(\sqrt{2x^2+8x+6}-\sqrt{x^2-1}=2x+2\)
ĐKXĐ: \(x\ge1;x\le-3;x=-1\)
\(\sqrt{2\left(x+1\right)\left(x+3\right)}-\sqrt{\left(x-1\right)\left(x+1\right)}=2\left(x+1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=0\left(1\right)\\\sqrt{2\left(x+3\right)}-\sqrt{x-1}=2\sqrt{x+1}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x+1=0\Rightarrow x=-1\)
\(\left(2\right)\Leftrightarrow\sqrt{2x+6}=\sqrt{x-1}+2\sqrt{x+1}\)
\(\Leftrightarrow2x+6=x-1+4\sqrt{\left(x-1\right)\left(x+1\right)}+4x+4\)
\(\Leftrightarrow4\sqrt{x^2-1}=3-3x\) \(\Leftrightarrow\left\{{}\begin{matrix}3-3x\ge0\\16\left(x^2-1\right)=\left(3-3x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\7x^2+18x-25=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-25}{7}\end{matrix}\right.\)
Vậy pt có 3 nghiệm: \(x=-1;1;\dfrac{-25}{7}\)
\(2\sqrt{x}+\dfrac{1}{\sqrt{x}}=2x+\dfrac{1}{2x}+\dfrac{1}{2}\)
giai pt vo ti
Giai pt \(\sqrt{3x+\sqrt{3}}-\sqrt{x-\sqrt{3}}=2\sqrt{x}\)
ĐKXĐ : \(x\ge\sqrt{3}\)
\(\sqrt{3x+\sqrt{3}}-\sqrt{x-\sqrt{3}}=2\sqrt{x}\)
\(\Leftrightarrow3x+\sqrt{3}-2\sqrt{\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}+x-\sqrt{3}=4x\)
\(\Leftrightarrow2\sqrt{\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+\sqrt{3}=0\\x-\sqrt{3}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-\sqrt{3}}{3}\left(ktm\right)\\x=\sqrt{3}\left(tm\right)\end{cases}}}\)
Vậy phương trình có nghiệm duy nhất là \(x=\sqrt{3}\)
đk: \(x\ge\sqrt{3}\)
Ta có: \(\sqrt{3x+\sqrt{3}}-\sqrt{x-\sqrt{3}}=2\sqrt{x}\)
\(\Leftrightarrow3x+\sqrt{3}-2\sqrt{\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}+x-\sqrt{3}=4x\)
\(\Leftrightarrow2\sqrt{\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}=0\)
\(\Leftrightarrow\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+\sqrt{3}=0\\x-\sqrt{3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{\sqrt{3}}{3}\left(ktm\right)\\x=\sqrt{3}\left(tm\right)\end{cases}}\)
Vậy \(x=\sqrt{3}\)
ĐKXĐ: \(x\ge\sqrt{3}\)
\(\sqrt{3x+\sqrt{3}}=2\sqrt{x}+\sqrt{x-\sqrt{3}}\)
+) Xét \(2\sqrt{x}=\sqrt{x-\sqrt{3}}\Rightarrow4x=x-3\Leftrightarrow x=-1\)---> Không thỏa ĐKXĐ
Vậy \(2\sqrt{x}-\sqrt{x-\sqrt{3}}\ne0\)---> Ta dùng lượng liên hiệp:
\(\sqrt{3x+\sqrt{3}}=\frac{\left(2\sqrt{x}+\sqrt{x-\sqrt{3}}\right)\left(2\sqrt{x}-\sqrt{x-\sqrt{3}}\right)}{2\sqrt{x}-\sqrt{x-\sqrt{3}}}=\frac{4x-\left(x-\sqrt{3}\right)}{2\sqrt{x}-\sqrt{x-\sqrt{3}}}\)
\(\sqrt{3x+\sqrt{3}}=\frac{3x+\sqrt{3}}{2\sqrt{x}-\sqrt{x-\sqrt{3}}}\Leftrightarrow\sqrt{3x+\sqrt{3}}\left(1-\frac{\sqrt{3x+\sqrt{3}}}{2\sqrt{x}-\sqrt{x-\sqrt{3}}}\right)=0\)
Vì \(x\ge\sqrt{3}\Rightarrow\sqrt{3x+\sqrt{3}}>0\Rightarrow1-\frac{\sqrt{3x+\sqrt{3}}}{2\sqrt{x}-\sqrt{x-\sqrt{3}}}=0\)
\(\Leftrightarrow2\sqrt{x}-\sqrt{x-\sqrt{3}}=\sqrt{3x+\sqrt{3}}\Rightarrow3x+\sqrt{3}-4\sqrt{x}.\sqrt{x-\sqrt{3}}=3x+\sqrt{3}\)
\(\Leftrightarrow\sqrt{x}.\sqrt{x-\sqrt{3}}=0\Rightarrow\orbr{\begin{cases}x=0\\x=\sqrt{3}\end{cases}}\)
Vì x = 0 không thỏa ĐKXĐ vậy PT nhận nghiệm duy nhất là \(x=\sqrt{3}\)
giai pt :\(2x^3-x^2+\sqrt{2x^3-3x+1}=3x+1+\sqrt[3]{x^2+2}\)
x= 0.761322463768116,
x= 0.369494467346496,
x=1.57660410301179
Giair PT vo ti bang phuong phap doi nghich:
\(x+\sqrt{2-x^2}=4y^2+4y+3\)
Giai PT
A=\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{2}\)
\(A=\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{2}\)
đkxđ \(\hept{\begin{cases}x\ge-\frac{1}{4}\\x\ge\frac{2}{3}\end{cases}}\)
đặt t=x+3 phương trình trở thành
\(A=\sqrt{4\left[x+3\right]-11}-\sqrt{3\left[x+3\right]-11}=\frac{x+3}{2}\)
\(A=\sqrt{4t-11}-\sqrt{3t-11}=\frac{t}{2}\)
\(\Leftrightarrow4t-11=\frac{t^2}{4}+3t-11+t\sqrt{3t-11}\)
\(\Leftrightarrow t^2-\frac{t^2}{4}=t\sqrt{3t-11}\)
\(\Leftrightarrow\frac{t\left[4-t\right]}{4}=t\sqrt{3t-11}\)
\(\Leftrightarrow\frac{\left[4-t\right]^2}{16}=3t-11\)
\(\Leftrightarrow t^2-56t+192=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=28+4\sqrt{37}\\t=28-4\sqrt{37}\end{cases}}\)
thế vào x+3=t suy ra
\(\orbr{\begin{cases}x=25+4\sqrt{37}\left[loại\right]\\x=25-4\sqrt{37}\left[nhận\right]\end{cases}}\)
\(S=\left\{25-4\sqrt{37}\right\}\)
1. Cho pt: x2 -2(m+1)x+m2=0 (1). Tìm m để pt có 2 nghiệm x1 ; x2 thỏa mãn (x1-m)2 + x2=m+2.
2. Giai pt: \(\left(x-1\right)\sqrt{2\left(x^2+4\right)}=x^2-x-2\)
3. Giai hệ pt: \(\left\{{}\begin{matrix}\frac{1}{\sqrt[]{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\left(1\right)\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\left(2\right)\end{matrix}\right.\)
4. Giai pt trên tập số nguyên \(x^{2015}=\sqrt{y\left(y+1\right)\left(y+2\right)\left(y+3\right)}+1\)
giai pt sau
\(\sqrt{3x-1}-\sqrt{x+2}.\sqrt{3x^2+7x+2}+4=4x-2\)
\(x^2-5x+3.\sqrt{2x-1}=2.\sqrt{14-2x}+5\)
\(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
nhiều thế giải ko đổi đâu bạn
đkxđ : \(\frac{1}{2}\le x\le7\)
\(x^2-5x+3\sqrt{2x-1}=2\sqrt{14-2x}+5\)
\(\Leftrightarrow\left(x^2-5x\right)+3\left(\sqrt{2x-1}-3\right)=2\left(\sqrt{14-2x}-2\right)\)
\(\Leftrightarrow x\left(x-5\right)+\frac{3.\left(2x-10\right)}{\sqrt{2x-1}+3}+\frac{2.\left(2x-10\right)}{\sqrt{14-2x}+2}=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+\frac{6}{\sqrt{2x-1}+3}+\frac{4}{\sqrt{14-2x}+2}\right)=0\)
\(\Leftrightarrow x=5\)
còn bài a,c lười đánh lắm
Giai pt :
\(\sqrt{3x^2-3x+1}+1=\sqrt[3]{6x^3+2}\)