CMR 2 số 1994100-1 ; 1994100 +1 không đồng thời là số nguyên tố
1. Cho số thực x. CMR: \(x^4+5>x^2+4x\)
2. Cho số thực x, y thỏa mãn x>y. CMR: \(x^3-3x+4\ge y^3-3y\)
3. Cho a, b là số thực dương thỏa mãn \(a^2+b^2=2\). CMR: \(\left(a+b\right)^5\ge16ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)
1, CMR 1 số chính phương có tận cùng là 0 thì phải tận cùng là chẵn chữ số 0
2, CMR 1 số chính phương tận cùng là 5 thì có chữ số hàng chục là chữ số 2
CMR 1 số chính phương có tận cung là 5 thì chữ số hàng chục là chữ số 2
CMR 1 số chính phương có tân cùng là 6 thì chữ số hàng chục là chữ số lẻ
CMR 1 số chính phương có tận cùng là 4 thì chữ số hàng chục là chữ số chẵn
CMR 1 số chính phương có tận cùng là 0 thì tận cùng bằng chẵn chữ số 0
Lời giải:
1.
Gọi số chính phương có tận cùng là $5$ là $a^2$. Khi đó $a$ cũng phải có tận cùng là $5$
Đặt \(a=\overline{A5}\)
\(\Leftrightarrow a^2=(\overline{A5})^2=(10A+5)^2=100A^2+100A+25\)
\(\Rightarrow a^2\) chia $100$ dư $25$ nên $a^2$ có tận cùng là $25$ hay chữ số hàng chục là $2$
--------------------
2.
Giả sử tồn tại số chính phương $a^2$ có tận cùng là $6$ và chữ số hàng chục là số chẵn.
Khi đó, $a^2$ có thể có tận cùng là $06,26,46,...,86$ $\rightarrow a^2$ không chia hết cho $4$ (1)
Mà $a^2$ có tận cùng bằng $6$ $\rightarrow a^2$ là scp chẵn, $\rightarrow a$ chẵn, $\rightarrow a.a=a^2$ chia hết cho $4$ (mâu thuẫn với (1))
Do đó không tồn tại số cp có tận cùng bằng $6$ mà chữ số hàng chục chẵn. Hay 1 số cp có tận cùng là 6 thì chữ số hàng chục là lẻ.
3.
Giả sử tồn tại số chính phương $a^2$ có tận cùng là $4$ mà chữ số hàng chục lẻ.
Khi đó $a^2$ có thể có tận cùng $14,34,...,94$. Những số trên đều không chia hết cho $4$ nên $a^2$ không chia hết cho $4$ (1)
Mà $a^2$ tận cùng là $4$ nên $a^2$ là scp chẵn. Do đó $a$ chẵn hay $a\vdots 2$
$\rightarrow a^2=a.a\vdots 4$ (mâu thuẫn với (1))
Do đó không tồn tại scp có tận cùng bằng 4 mà chữ số hàng chục lẻ. Hay một số cp có tận cùng là 4 thì chữ số hàng hàng chục là số chẵn.
-----------------
4.
Gọi $a^2$ là scp có tận cùng $n$ chữ số $0$. Khi đó $a$ cũng phải có tận cùng bẳng $0$
Đặt \(a^2=(\overline{A0...0})^2\) ($n$ chữ số 0)
\(=(10^nA)^2=10^{2n}A^2=A^2.10...0\) ($n$ chữ số 0)
Hay $a^2$ có tận cùng là $2n$ chữ số $0$. $2n$ là số chẵn nên $a^2$ có lượng chẵn chữ số 0 tận cùng (đpcm)
1. CMR 75n+7 và 10n+1 là 2 số nguyên tố cùng nhau
2. CMR 8n+9 và 9n+10 là 2 số nguyên tố cùng nhau
1/
3^1+3^2+3^3+3^4+...+3^2018+3^2019.CMR S+1 chia hết cho 4
2/
CMR số 111...111(có 27 chữ số 1) thì chia hết cho 27
3/
cho A=2^n và B=2^n+1.CMR A và B không đồng thời là hai số nguyên tố khi n thuộc N,n>2
1) Tìm số có 2 chữ số ab sao cho số N=ab - ba là số chính phương
2) CMR 5X² + 10 và 4x² + 4x + 6 không phải là số chính phương
3) CMR (5k)² -1 và (7k)² -1 chia hết cho 24
4) CMR với mọi n thuộc số tự nhiên ta có (7.5^2n)+(12.6^n) chia hết cho 19
1.CMR trong tất cả các số có 4 chữ số khác nhau được lập bởi các chữ số 1;2;3;4 không có 2 số nào mà 1 số chia hết cho 2 số còn lại
2.CMR (n-1).(n+2)+12 không chia hết cho 9 với mọi n thuộc N
3.CMR không tồn tại n thuộc N thỏa mãn 20142014+1 chia hết cho n3+2012n
a) Cho số A gồm 200 chữ số 1 và số B gồm 100 chữ số 2. CMR: A-B là một số chính phương
b) CMR: Nếu n là hợp số thì 2n-1 cũng là hợp số
b)
đặt A= 1+2^1+2^2+.....+2^(n-1) (1) (điều kiện: n là hợp số)
=>2A =2.[1+2^1+2^2+.....+2^(n-1)]
=>2A=2^1+2^2+.....+2^(n-1) +2^n (2)
lấy (2) - (1) vế theo vế ta có:
2A-A= 2^n -1
=> A= 2^n -1
=> 2^n -1 = 1+2^1+2^2+.....+2^(n-1)
vì n là hợp số =>n=a.b ( a,b thuộc N ; a >1; b>1)
=> 1+2^1+2^2+.....+2^(n-1) =1+2^1+2^2+.....+2^(a.b-1)
trong tổng 1+2^1+2^2+.....+2^(a.b-1) có (a.b-1-0) :1+1 =a.b số hạng
=> tổng 1+2^1+2^2+.....+2^(a.b-1) có thể chia thành b nhóm ; hoặc a nhóm
=>1+2^1+2^2+.....+2^(a.b-1) chia hết cho a và chia hết cho b mà a,b thuộc N ; a >1; b>1
=>1+2^1+2^2+.....+2^(a.b-1) là hợp số => 2^n - 1 cũng là hợp số
1,Cho 2000 số A1,A2,A3,...A2000 là các số TN thỏa mãn: 1/A1+1/A2+1/A3+....+1/A2000=1. CMR tồn tại ít nhất 1 số Ak là số chẵn
2,Gọi A1,A2,A3,...A100 là các số TN thỏa mãn: 1/A21+1/A22+....+1/A1002=199/100. CMR có ít nhất 2 số TN trong các số trên =nhau
3,Cho 2021 số nguyên dương A1,A2,....,A2021 thỏa mãn 1/A1+1/A2+1/A3+.....+1/A2021=1011. CMR ít nhất 2 trong đó = nhau
Giúp mình với nha!
câu 2,
a,CMR 2 số 1994160-1;1994100+1 ko thể đồng thời là 2 số nguyên tố
c,CMR nếu p là 1 số nguyên tố >3 thì (p+1).(p+2)⋮24