Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Lan
Xem chi tiết
Nguyễn Thị Thùy Linh
Xem chi tiết
Nguyễn Thị Thùy Linh
5 tháng 11 2021 lúc 20:44

Vẽ hộ mik cái hình nhé vui

Nguyễn Lê Phước Thịnh
5 tháng 11 2021 lúc 20:45

a: Xét ΔAME và ΔBMP có 

\(\widehat{MAE}=\widehat{MBP}\)

AM=BM

\(\widehat{AME}=\widehat{BMP}\)

Do đó: ΔAME=ΔBMP

PHƯƠNG dung
Xem chi tiết
Nguyễn Huỳnh Bá Lộc
Xem chi tiết
Lê Nhật Khôi
19 tháng 3 2019 lúc 12:49

Dễ chứng minh từ các hình bình hành to nhỏ khác nhau. Từ đó CM O là trung điểm AA(1).

Vậy \(A,O,A_1\)thẳng hàng

tran xuan quynh
Xem chi tiết
Kinder
Xem chi tiết
Mai Thanh Hoàng
Xem chi tiết
Nguyễn Mai Phương
19 tháng 2 2018 lúc 19:54

a, https://olm.vn/hoi-dap/question/1030999.html

b,\(\frac{\sqrt{3}}{3}\)

Nguyễn Mai Phương
19 tháng 2 2018 lúc 20:11

CM PD+PE+PF=AH(đường cao)=\(\frac{\sqrt{3}AB}{2}\)

CM BD+CE+AF=\(\frac{3AB}{2}\)

D/s:\(\frac{\sqrt{3}}{3}\)

Linh_Chi_chimte
Xem chi tiết
Nguyễn Tất Đạt
25 tháng 4 2018 lúc 14:45

A B C H L F K O I G P D Q

a) Ta có: Điểm K đối xứng với điểm F qua AC => FC=KC;  AF=AK 

=> \(\Delta\)ACF=\(\Delta\)ACK (c.c.c) => ^AFC=^AKC (2 góc tương ứng) 

Ta thấy tứ giác ABFC nội tiếp đường tròn tâm O => ^AFC=^ABC.

H là trực tâm của tam giác ABC => CH\(\perp\)AB (tại D)

=> ^HCB + ^ABC = 900 (1)

 Lại có AH\(\perp\)BC => ^LHC + ^HCB = 900 (2)

Từ (1) và (2) => ^ABC=^LHC. Mà ^LHC + ^AHC = 1800

=> ^ABC + ^AHC = 1800. Do ^ABC=^AFC=^AKC (cmt) => ^AKC + ^AHC= 1800

Xét tứ giác AHCK có: ^AKC + ^AHC =1800 => Tứ giác AHCK nội tiếp đường tròn (đpcm).

b) AO cắt GI tại Q

Gọi giao điểm của AO và (O) là P = >^ACP=900 => ^CAP+^CPA=900 (*)

Thấy tứ giác ACPB nội tiếp đường tròn (O) => ^CPA=^ABC 

Mà ^ABC+^AHC=1800 => ^CPA+^AHC=1800 (3).

Ta có tứ giác AHCK là tứ giác nội tiếp (cmt) => ^KAI=^CHI

Lại có \(\Delta\)ACF=\(\Delta\)ACK => ^FAC=^KAC hay ^KAI=^GAI  => ^GAI=^CHI

Xét tứ giác AHGI: ^GAI=^GHI (=^CHI) (cmt) = >Tứ giác AHGI nội tiếp đường tròn

=> ^AIG+^AHG=1800 hay ^AIG + ^AHC=1800 (4)

Từ (3) và (4) => ^AIG=^CPA (**)

Từ (*) và (**) => ^CAP+^AIG=900 hay ^IAQ+^AIQ=900 => \(\Delta\)AIQ vuông tại Q

Vậy AO vuông góc với GI (đpcm).

Nguyễn Như Ngọc
Xem chi tiết
tranhongngoc
Xem chi tiết