Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đường Tăng
Xem chi tiết
Xuân
Xem chi tiết
Hí Ae
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 21:07

a) Xét ΔOAB và ΔOCD có 

\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\left(=\dfrac{3}{2}\right)\)

\(\widehat{AOB}\) chung

Do đó: ΔOAB\(\sim\)ΔOCD(c-g-c)

Trần Văn Thanh
Xem chi tiết
Giúp mình với nha
Xem chi tiết
Lê Thanh Nam
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
17 tháng 5 2017 lúc 9:36

O A B x y a b -b H
a) Do AB//Ox và tam giác OAB đều nên điểm A đối xứng với điểm B qua Ox.
Suy ra: AB = 2 = 2b. Nên b = 1.
Áp dụng định lý Pi-ta-go: \(OH=\sqrt{AB^2-HA^2}=\sqrt{2^2-1^2}=\sqrt{3}\).
Suy ra: \(a=\sqrt{3}\Rightarrow x_A=\sqrt{3};y_B=-\sqrt{3}\).
Vậy \(A\left(1;\sqrt{3}\right),B\left(-1;-\sqrt{3}\right)\).

Phạm Phương Nguyên
Xem chi tiết
Phan Thị Minh Trí
Xem chi tiết
Thiên An
6 tháng 5 2016 lúc 20:35

Giả sử A(a;0;0); B(0;b;0) và C(0;0;c) với \(abc\ne0\). Khi đó, mặt phẳng (P) có phươn trình :

                                                 \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)

Do \(G\left(1;2;3\right)\in\left(P\right)\) nên 

                                                  \(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}=1\) (1)

Vì G là trọng tâm của tam giác ABC nên :

\(\begin{cases}1=\frac{a+0+0}{3}\\2=\frac{0+b+0}{3}\\3=\frac{0+0+c}{3}\end{cases}\)

Dễ dàng kiểm tra được \(a=3;b=6;c=9\) thỏa mãn (1). Vậy mặt phẳng cần tìm là   \(\frac{x}{3}+\frac{y}{6}+\frac{z}{9}=1\)

hay    \(6x+3y+2z-18=0\)