Bài 2: Phương trình mặt phẳng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan Thị Minh Trí

Viết phương trình mặt phẳng (P) đi qua điểm G(1;2;3) và lần lượt cắt Ox, Oy, Oz tại A, B, C sao cho G là trọng tâm của tam giác ABC

Thiên An
6 tháng 5 2016 lúc 20:35

Giả sử A(a;0;0); B(0;b;0) và C(0;0;c) với \(abc\ne0\). Khi đó, mặt phẳng (P) có phươn trình :

                                                 \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)

Do \(G\left(1;2;3\right)\in\left(P\right)\) nên 

                                                  \(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}=1\) (1)

Vì G là trọng tâm của tam giác ABC nên :

\(\begin{cases}1=\frac{a+0+0}{3}\\2=\frac{0+b+0}{3}\\3=\frac{0+0+c}{3}\end{cases}\)

Dễ dàng kiểm tra được \(a=3;b=6;c=9\) thỏa mãn (1). Vậy mặt phẳng cần tìm là   \(\frac{x}{3}+\frac{y}{6}+\frac{z}{9}=1\)

hay    \(6x+3y+2z-18=0\)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Mai Linh chi
Xem chi tiết
Thu Hoài
Xem chi tiết
Lê Mạnh Cường
Xem chi tiết
Phan trà my
Xem chi tiết
Nguyễn Nguyên Thái Thanh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Thị Hà Uyên
Xem chi tiết
Vuong Vuong
Xem chi tiết